982 resultados para Nitriding temperatures
Resumo:
Studies of skin wound healing in crocodilians are necessary given the frequent occurrence of cannibalism in intensive farming systems. Air temperature affects tissue recovery because crocodilians are ectothermic. Therefore, the kinetics of skin wound healing in Caiman yacare were examined at temperatures of 33°C and 23°C. Sixteen caiman were selected and divided into two groups of eight maintained at 23°C or 33°C. The studied individuals' scars were photographed after 1, 2, 3, 7, 15 and 30 days of the experimental conditions, and samples were collected for histological processing after 3, 7, 15 and 30 days. Macroscopically, the blood clot (heterophilic granuloma) noticeably remained in place covering the wound longer for the caiman kept at 23°C. Microscopically, the temperature of 23°C slowed epidermal migration and skin repair. Comparatively, new blood vessels, labeled using von Willebrand factor (vWF) antibody staining, were more frequently found in the scars of the 33°C group. The collagen fibers in the dermis were denser in the 33°C treatment. Considering the delayed healing at 23°C, producers are recommended to keep wounded animals at 33°C, especially when tanks are cold, to enable rapid wound closure and better repair of collagen fibers because such lesions tend to compromise the use of their skin as leather.
Resumo:
The aim of the work is to conduct a finite element model analysis on a small – size concrete beam and on a full size concrete beam internally reinforced with BFRP exposed at elevated temperatures. Experimental tests performed at Kingston University have been used to compare the results from the numerical analysis for the small – size concrete beam. Once the behavior of the small – size beam at room temperature is investigated and switching to the heating phase reinforced beams are tested at 100°C, 200°C and 300°C in loaded condition. The aim of the finite element analysis is to reflect the three – point bending test adopted into the oven during the exposure of the beam at room temperature and at elevated temperatures. Performance and deformability of reinforced beams are straightly correlated to the material properties and a wide analysis on elastic modulus and coefficient of thermal expansion is given in this work. Develop a good correlation between the numerical model and the experimental test is the main objective of the analysis on the small – size concrete beam, for both modelling the aim is also to estimate which is the deterioration of the material properties due to the heating process and the influence of different parameters on the final result. The focus of the full – size modelling which involved the last part of this work is to evaluate the effect of elevated temperatures, the material deterioration and the deflection trend on a reinforced beam characterized by a different size. A comparison between the results from different modelling has been developed.
Resumo:
The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure.
Resumo:
The Gaussian-2, Gaussian-3, complete basis set- (CBS-) QB3, and CBS-APNO methods have been used to calculate ΔH° and ΔG° values for neutral clusters of water, (H2O)n, where n = 2−6. The structures are similar to those determined from experiment and from previous high-level calculations. The thermodynamic calculations by the G2, G3, and CBS-APNO methods compare well against the estimated MP2(CBS) limit. The cyclic pentamer and hexamer structures release the most heat per hydrogen bond formed of any of the clusters. While the cage and prism forms of the hexamer are the lowest energy structures at very low temperatures, as temperature is increased the cyclic structure is favored. The free energies of cluster formation at different temperatures reveal interesting insights, the most striking being that the cyclic trimer, cyclic tetramer, and cyclic pentamer, like the dimer, should be detectable in the lower troposphere. We predict water dimer concentrations of 9 × 1014 molecules/cm3, water trimer concentrations of 2.6 × 1012 molecules/cm3, tetramer concentrations of approximately 5.8 × 1011 molecules/cm3, and pentamer concentrations of approximately 3.5 × 1010 molecules/cm3 in saturated air at 298 K. These results have important implications for understanding the gas-phase chemistry of the lower troposphere.
Resumo:
Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood. Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern Scandinavia, establish a suite of 36 subset chronologies, and analyse their climate signal. A new reconstruction for the 1483–2006 period correlates at 0.80 with June–August temperatures back to 1860. Summer cooling during the early 17th century and peak warming in the 1930s translate into a decadal amplitude of 2.9°C, which agrees with existing Scandinavian tree-ring proxies. Climate model simulations reveal similar amounts of mid to low frequency variability, suggesting that internal ocean-atmosphere feedbacks likely influenced Scandinavian temperatures more than external forcing. Projected 21st century warming under the SRES A2 scenario would, however, exceed the reconstructed temperature envelope of the past 1,500 years.
Resumo:
The resting and maximum in situ cardiac performance of Newfoundland Atlantic cod (Gadus morhua) acclimated to 10, 4 and 0°C were measured at their respective acclimation temperatures, and when acutely exposed to temperature changes: i.e. hearts from 10°C fish cooled to 4°C, and hearts from 4°C fish measured at 10 and 0°C. Intrinsic heart rate (f(H)) decreased from 41 beats min(-1) at 10°C to 33 beats min(-1) at 4°C and 25 beats min(-1) at 0°C. However, this degree of thermal dependency was not reflected in maximal cardiac output (Q(max) values were ~44, ~37 and ~34 ml min(-1) kg(-1) at 10, 4 and 0°C, respectively). Further, cardiac scope showed a slight positive compensation between 4 and 0°C (Q(10)=1.7), and full, if not a slight over compensation between 10 and 4°C (Q(10)=0.9). The maximal performance of hearts exposed to an acute decrease in temperature (i.e. from 10 to 4°C and 4 to 0°C) was comparable to that measured for hearts from 4°C- and 0°C-acclimated fish, respectively. In contrast, 4°C-acclimated hearts significantly out-performed 10°C-acclimated hearts when tested at a common temperature of 10°C (in terms of both Q(max) and power output). Only minimal differences in cardiac function were seen between hearts stimulated with basal (5 nmol l(-1)) versus maximal (200 nmol l(-1)) levels of adrenaline, the effects of which were not temperature dependent. These results: (1) show that maximum performance of the isolated cod heart is not compromised by exposure to cold temperatures; and (2) support data from other studies, which show that, in contrast to salmonids, cod cardiac performance/myocardial contractility is not dependent upon humoral adrenergic stimulation.
Resumo:
A lacustrine sediment core from Fiddaun, western Ireland was studied to reconstruct summer temperature changes during the Weichselian Lateglacial. This site is located close to the Atlantic Ocean; and so is potentially sensitive to climatic changes associated with changes in ocean circulation. The record, comprising the end of the Weichselian Pleniglacial to the early Holocene, was analysed for fossil chironomids, lithology, and oxygen and carbon isotopes in the sedimentary carbonates. These proxies clearly show rapid warming at the onset of the Lateglacial Interstadial, relatively high summer temperatures during the Interstadial, pronounced cooling during the Younger Dryas, and subsequent warming at the transition to the Holocene. Chironomid-inferred mean July air temperatures for the Interstadial are ~12.5–14.5 °C, ~7.5 °C for the Younger Dryas, and ~15.0 °C for the early Holocene. Furthermore, this research provides evidence for at least two cold events during the Interstadial. These more moderate temperature oscillations can be correlated to Greenland Interstadial events 1b and 1d, on the basis of the age-depth model for the Fiddaun sequence. Based on multiple proxies, the first cold oscillation (GI-1d) was the more severe of the two in Ireland.