834 resultados para Network Analysis Methods


Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the major challenges in systems biology is to understand the complex responses of a biological system to external perturbations or internal signalling depending on its biological conditions. Genome-wide transcriptomic profiling of cellular systems under various chemical perturbations allows the manifestation of certain features of the chemicals through their transcriptomic expression profiles. The insights obtained may help to establish the connections between human diseases, associated genes and therapeutic drugs. The main objective of this study was to systematically analyse cellular gene expression data under various drug treatments to elucidate drug-feature specific transcriptomic signatures. We first extracted drug-related information (drug features) from the collected textual description of DrugBank entries using text-mining techniques. A novel statistical method employing orthogonal least square learning was proposed to obtain drug-feature-specific signatures by integrating gene expression with DrugBank data. To obtain robust signatures from noisy input datasets, a stringent ensemble approach was applied with the combination of three techniques: resampling, leave-one-out cross validation, and aggregation. The validation experiments showed that the proposed method has the capacity of extracting biologically meaningful drug-feature-specific gene expression signatures. It was also shown that most of signature genes are connected with common hub genes by regulatory network analysis. The common hub genes were further shown to be related to general drug metabolism by Gene Ontology analysis. Each set of genes has relatively few interactions with other sets, indicating the modular nature of each signature and its drug-feature-specificity. Based on Gene Ontology analysis, we also found that each set of drug feature (DF)-specific genes were indeed enriched in biological processes related to the drug feature. The results of these experiments demonstrated the pot- ntial of the method for predicting certain features of new drugs using their transcriptomic profiles, providing a useful methodological framework and a valuable resource for drug development and characterization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os Mercados Eletrónicos atingiram uma complexidade e nível de sofisticação tão elevados, que tornaram inadequados os modelos de software convencionais. Estes mercados são caracterizados por serem abertos, dinâmicos e competitivos, e constituídos por várias entidades independentes e heterogéneas. Tais entidades desempenham os seus papéis de forma autónoma, seguindo os seus objetivos, reagindo às ocorrências do ambiente em que se inserem e interagindo umas com as outras. Esta realidade levou a que existisse por parte da comunidade científica um especial interesse no estudo da negociação automática executada por agentes de software [Zhang et al., 2011]. No entanto, a diversidade dos atores envolvidos pode levar à existência de diferentes conceptualizações das suas necessidades e capacidades dando origem a incompatibilidades semânticas, que podem prejudicar a negociação e impedir a ocorrência de transações que satisfaçam as partes envolvidas. Os novos mercados devem, assim, possuir mecanismos que lhes permitam exibir novas capacidades, nomeadamente a capacidade de auxiliar na comunicação entre os diferentes agentes. Pelo que, é defendido neste trabalho que os mercados devem oferecer serviços de ontologias que permitam facilitar a interoperabilidade entre os agentes. No entanto, os humanos tendem a ser relutantes em aceitar a conceptualização de outros, a não ser que sejam convencidos de que poderão conseguir um bom negócio. Neste contexto, a aplicação e exploração de relações capturadas em redes sociais pode resultar no estabelecimento de relações de confiança entre vendedores e consumidores, e ao mesmo tempo, conduzir a um aumento da eficiência da negociação e consequentemente na satisfação das partes envolvidas. O sistema AEMOS é uma plataforma de comércio eletrónico baseada em agentes que inclui serviços de ontologias, mais especificamente, serviços de alinhamento de ontologias, incluindo a recomendação de possíveis alinhamentos entre as ontologias dos parceiros de negociação. Este sistema inclui também uma componente baseada numa rede social, que é construída aplicando técnicas de análise de redes socias sobre informação recolhida pelo mercado, e que permite melhorar a recomendação de alinhamentos e auxiliar os agentes na sua escolha. Neste trabalho são apresentados o desenvolvimento e implementação do sistema AEMOS, mais concretamente: • É proposto um novo modelo para comércio eletrónico baseado em agentes que disponibiliza serviços de ontologias; • Adicionalmente propõem-se o uso de redes sociais emergentes para captar e explorar informação sobre relações entre os diferentes parceiros de negócio; • É definida e implementada uma componente de serviços de ontologias que é capaz de: • o Sugerir alinhamentos entre ontologias para pares de agentes; • o Traduzir mensagens escritas de acordo com uma ontologia em mensagens escritas de acordo com outra, utilizando alinhamentos previamente aprovados; • o Melhorar os seus próprios serviços recorrendo às funcionalidades disponibilizadas pela componente de redes sociais; • É definida e implementada uma componente de redes sociais que: • o É capaz de construir e gerir um grafo de relações de proximidade entre agentes, e de relações de adequação de alinhamentos a agentes, tendo em conta os perfis, comportamento e interação dos agentes, bem como a cobertura e utilização dos alinhamentos; • o Explora e adapta técnicas e algoritmos de análise de redes sociais às várias fases dos processos do mercado eletrónico. A implementação e experimentação do modelo proposto demonstra como a colaboração entre os diferentes agentes pode ser vantajosa na melhoria do desempenho do sistema e como a inclusão e combinação de serviços de ontologias e redes sociais se reflete na eficiência da negociação de transações e na dinâmica do mercado como um todo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spatial analysis and social network analysis typically take into consideration social processes in specific contexts of geographical or network space. The research in political science increasingly strives to model heterogeneity and spatial dependence. To better understand and geographically model the relationship between “non-political” events, streaming data from social networks, and political climate was the primary objective of the current study. Geographic information systems (GIS) are useful tools in the organization and analysis of streaming data from social networks. In this study, geographical and statistical analysis were combined in order to define the temporal and spatial nature of the data eminating from the popular social network Twitter during the 2014 FIFA World Cup. The study spans the entire globe because Twitter’s geotagging function, the fundamental data that makes this study possible, is not limited to a geographic area. By examining the public reactions to an inherenlty non-political event, this study serves to illuminate broader questions about social behavior and spatial dependence. From a practical perspective, the analyses demonstrate how the discussion of political topics fluсtuate according to football matches. Tableau and Rapidminer, in addition to a set basic statistical methods, were applied to find patterns in the social behavior in space and time in different geographic regions. It was found some insight into the relationship between an ostensibly non-political event – the World Cup - and public opinion transmitted by social media. The methodology could serve as a prototype for future studies and guide policy makers in governmental and non-governmental organizations in gauging the public opinion in certain geographic locations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Non-invasive brain imaging techniques often contrast experimental conditions across a cohort of participants, obfuscating distinctions in individual performance and brain mechanisms that are better characterised by the inter-trial variability. To overcome such limitations, we developed topographic analysis methods for single-trial EEG data [1]. So far this was typically based on time-frequency analysis of single-electrode data or single independent components. The method's efficacy is demonstrated for event-related responses to environmental sounds, hitherto studied at an average event-related potential (ERP) level. Methods: Nine healthy subjects participated to the experiment. Auditory meaningful sounds of common objects were used for a target detection task [2]. On each block, subjects were asked to discriminate target sounds, which were living or man-made auditory objects. Continuous 64-channel EEG was acquired during the task. Two datasets were considered for each subject including single-trial of the two conditions, living and man-made. The analysis comprised two steps. In the first part, a mixture of Gaussians analysis [3] provided representative topographies for each subject. In the second step, conditional probabilities for each Gaussian provided statistical inference on the structure of these topographies across trials, time, and experimental conditions. Similar analysis was conducted at group-level. Results: Results show that the occurrence of each map is structured in time and consistent across trials both at the single-subject and at group level. Conducting separate analyses of ERPs at single-subject and group levels, we could quantify the consistency of identified topographies and their time course of activation within and across participants as well as experimental conditions. A general agreement was found with previous analysis at average ERP level. Conclusions: This novel approach to single-trial analysis promises to have impact on several domains. In clinical research, it gives the possibility to statistically evaluate single-subject data, an essential tool for analysing patients with specific deficits and impairments and their deviation from normative standards. In cognitive neuroscience, it provides a novel tool for understanding behaviour and brain activity interdependencies at both single-subject and at group levels. In basic neurophysiology, it provides a new representation of ERPs and promises to cast light on the mechanisms of its generation and inter-individual variability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IT outsourcing (ITO) refers to the shift of IT/IS activities from internal to external of an organization. In prior research, the governance of ITO is recognized with persistent strategic importance for practice, because it is tightly related to ITO success. Under the rapid transformation of global market, the evolving practice of ITO requires updated knowledge on effective governance. However, research on ITO governance is still under developed due to the lack of integrated theoretical frameworks and the variety of empirical settings besides dyadic client-vendor relationships. Especially, as multi-sourcing has become an increasingly common practice in ITO, its new governance challenges must be attended by both ITO researchers and practitioners. To address this research gap, this study aims to understand multi-sourcing governance with an integrated theoretical framework incorporating both governance structure and governance mechanisms. The focus is on the emerging deviations among formal, perceived and practiced governance. With an interpretive perspective, a single case study is conducted with mixed methods of Social Network Analysis (SNA) and qualitative inquiries. The empirical setting embraces one client firm and its two IT suppliers for IT infrastructure services. The empirical material is analyzed at three levels: within one supplier firm, between the client and one supplier, and among all three firms. Empirical evidences, at all levels, illustrate various deviations in governance mechanisms, with which emerging governance structures are shaped. This dissertation contributes to the understanding of ITO governance in three domains: the governance of ITO in general, the governance of multi-sourcing in particular, and research methodology. For ITO governance in general, this study has identified two research strands of governance structure and governance mechanisms, and integrated both concepts under a unified framework. The composition of four research papers contributes to multi-sourcing research by illustrating the benefits of zooming in and out across the multilateral relationships with different aspects and scopes. Methodologically, the viability and benefit of mixed-method is illustrated and confirmed for both researchers and practitioners.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolving antimicrobial resistance coupled with a recent increase in incidence highlights the importance of reducing gonococcal transmission. Establishing novel risk factors associated with gonorrhea facilitates the development of appropriate prevention and disease control strategies. Sexual Network Analysis (NA), a novel research technique used to further understand sexually transmitted infections, was used to identify network-based risk factors in a defined region in Ontario, Canada experiencing an increase in the incidence of gonorrhea. Linear network structures were identified as important reservoirs of gonococcal transmission. Additionally, a significant association between a central network position and gonorrhea was observed. The central participants were more likely to be younger, report a greater number of risk factors, engage in anonymous sex, have multiple sex partners in the past six months and have sex with the same sex. The network-based risk factors identified through sexual NA, serving as a method of analyzing local surveillance data, support the development of strategies aimed at reducing gonococcal spread.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Warships are generally sleek, slender with V shaped sections and block coefficient below 0.5, compared to fuller forms and higher values for commercial ships. They normally operate in the higher Froude number regime, and the hydrodynamic design is primarily aimed at achieving higher speeds with the minimum power. Therefore the structural design and analysis methods are different from those for commercial ships. Certain design guidelines have been given in documents like Naval Engineering Standards and one of the new developments in this regard is the introduction of classification society rules for the design of warships.The marine environment imposes subjective and objective uncertainties on ship structure. The uncertainties in loads, material properties etc.,. make reliable predictions of ship structural response a difficult task. Strength, stiffness and durability criteria for warship structures can be established by investigations on elastic analysis, ultimate strength analysis and reliability analysis. For analysis of complicated warship structures, special means and valid approximations are required.Preliminary structural design of a frigate size ship has been carried out . A finite element model of the hold model, representative of the complexities in the geometric configuration has been created using the finite element software NISA. Two other models representing the geometry to a limited extent also have been created —- one with two transverse frames and the attached plating alongwith the longitudinal members and the other representing the plating and longitudinal stiffeners between two transverse frames. Linear static analysis of the three models have been carried out and each one with three different boundary conditions. The structural responses have been checked for deflections and stresses against the permissible values. The structure has been found adequate in all the cases. The stresses and deflections predicted by the frame model are comparable with those of the hold model. But no such comparison has been realized for the interstiffener plating model with the other two models.Progressive collapse analyses of the models have been conducted for the three boundary conditions, considering geometric nonlinearity and then combined geometric and material nonlinearity for the hold and the frame models. von Mises — lllyushin yield criteria with elastic-perfectly plastic stress-strain curve has been chosen. ln each case, P-Delta curves have been generated and the ultimate load causing failure (ultimate load factor) has been identified as a multiple of the design load specified by NES.Reliability analysis of the hull module under combined geometric and material nonlinearities have been conducted. The Young's Modulus and the shell thickness have been chosen as the variables. Randomly generated values have been used in the analysis. First Order Second Moment has been used to predict the reliability index and thereafter, the probability of failure. The values have been compared against standard values published in literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mit aktiven Magnetlagern ist es möglich, rotierende Körper durch magnetische Felder berührungsfrei zu lagern. Systembedingt sind bei aktiv magnetgelagerten Maschinen wesentliche Signale ohne zusätzlichen Aufwand an Messtechnik für Diagnoseaufgaben verfügbar. In der Arbeit wird ein Konzept entwickelt, das durch Verwendung der systeminhärenten Signale eine Diagnose magnetgelagerter rotierender Maschinen ermöglicht und somit neben einer kontinuierlichen Anlagenüberwachung eine schnelle Bewertung des Anlagenzustandes gestattet. Fehler können rechtzeitig und ursächlich in Art und Größe erkannt und entsprechende Gegenmaßnahmen eingeleitet werden. Anhand der erfassten Signale geschieht die Gewinnung von Merkmalen mit signal- und modellgestützten Verfahren. Für den Magnetlagerregelkreis erfolgen Untersuchungen zum Einsatz modellgestützter Parameteridentifikationsverfahren, deren Verwendbarkeit wird bei der Diagnose am Regler und Leistungsverstärker nachgewiesen. Unter Nutzung von Simulationsmodellen sowie durch Experimente an Versuchsständen werden die Merkmalsverläufe im normalen Referenzzustand und bei auftretenden Fehlern aufgenommen und die Ergebnisse in einer Wissensbasis abgelegt. Diese dient als Grundlage zur Festlegung von Grenzwerten und Regeln für die Überwachung des Systems und zur Erstellung wissensbasierter Diagnosemodelle. Bei der Überwachung werden die Merkmalsausprägungen auf das Überschreiten von Grenzwerten überprüft, Informationen über erkannte Fehler und Betriebszustände gebildet sowie gegebenenfalls Alarmmeldungen ausgegeben. Sich langsam anbahnende Fehler können durch die Berechnung der Merkmalstrends mit Hilfe der Regressionsanalyse erkannt werden. Über die bisher bei aktiven Magnetlagern übliche Überwachung von Grenzwerten hinaus erfolgt bei der Fehlerdiagnose eine Verknüpfung der extrahierten Merkmale zur Identifizierung und Lokalisierung auftretender Fehler. Die Diagnose geschieht mittels regelbasierter Fuzzy-Logik, dies gestattet die Einbeziehung von linguistischen Aussagen in Form von Expertenwissen sowie die Berücksichtigung von Unbestimmtheiten und ermöglicht damit eine Diagnose komplexer Systeme. Für Aktor-, Sensor- und Reglerfehler im Magnetlagerregelkreis sowie Fehler durch externe Kräfte und Unwuchten werden Diagnosemodelle erstellt und verifiziert. Es erfolgt der Nachweis, dass das entwickelte Diagnosekonzept mit beherrschbarem Rechenaufwand korrekte Diagnoseaussagen liefert. Durch Kaskadierung von Fuzzy-Logik-Modulen wird die Transparenz des Regelwerks gewahrt und die Abarbeitung der Regeln optimiert. Endresultat ist ein neuartiges hybrides Diagnosekonzept, welches signal- und modellgestützte Verfahren der Merkmalsgewinnung mit wissensbasierten Methoden der Fehlerdiagnose kombiniert. Das entwickelte Diagnosekonzept ist für die Anpassung an unterschiedliche Anforderungen und Anwendungen bei rotierenden Maschinen konzipiert.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El 17th Annual Meeting of the Florence Network (FN) va tenir lloc del 21 al 25 d’abril de 2009 a The Hague University of Applied Sciences (THU) Academy of Health-School of Nursing, sota el lema: “Patient/client centred healthcare”. The Ducht perspective with an international touch”, i es va centrar en l’actual situació dels drets dels pacients a Holanda aplicat en diferents camps de les cures infermeres. L’Escola d’Infermeria de la Universitat de Girona hi va participar amb l’assistència de dues professores i quatre estudiants. E nombre total d’estudiants que varen assistir a la FN es de 47. La procedència dels mateixos en total de 9 països diferents. De tots ells assistien per primer cop 18 persones 4 ho feien per segona vegada i 1 per tercera . Els objectius del treball que es presenta son els següents: 1, Conèixer l’opinió dels estudiants respecte a la seva participació a la Florence Network. 2, Saber quin perfil tenen els universitaris que hi assisteixen 3, Detectar els punts forts i els punts febles que destaquen els estudiants després de participar a la Florence Network

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La crisis que se desató en el mercado hipotecario en Estados Unidos en 2008 y que logró propagarse a lo largo de todo sistema financiero, dejó en evidencia el nivel de interconexión que actualmente existe entre las entidades del sector y sus relaciones con el sector productivo, dejando en evidencia la necesidad de identificar y caracterizar el riesgo sistémico inherente al sistema, para que de esta forma las entidades reguladoras busquen una estabilidad tanto individual, como del sistema en general. El presente documento muestra, a través de un modelo que combina el poder informativo de las redes y su adecuación a un modelo espacial auto regresivo (tipo panel), la importancia de incorporar al enfoque micro-prudencial (propuesto en Basilea II), una variable que capture el efecto de estar conectado con otras entidades, realizando así un análisis macro-prudencial (propuesto en Basilea III).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En este proyecto analizaremos como las organizaciones se relacionan con el medio y marketing. La idea es determinar cuáles son los métodos de análisis de las comunidades de clientes mediante la relación estratégica comunitaria y el marketing. Por medio del mercadeo se puede conocer el entorno y determinar qué métodos de análisis utilizar para conocer a la comunidad de clientes. Las personas de mercadeo se ocupan de todo lo que ocurre en el entorno, de estar al tanto para saber cuándo hay oportunidades que puedan ser provechosas para la organización o por otro lado cuando hay amenazas de las que debe tener cuidado. Dependiendo del entorno, la organización diseña sus actividades de mercadeo enfocadas en satisfacer las necesidades del consumidor. Las actividades del consumidor se conceptualizan en producto, precio, promoción y plaza que se definen y diseñan basados en la comunidad en la que este inmersa la organización. Es importante buscar información confiable sobre el grupo objetivo al cual se le va ofrecer el producto o servicio, ya que toca analizarlos y comprender a estas personas para diseñar una buena oferta que satisfaga sus necesidades y deseos. Esta persona que recibe el producto o servicio por parte de la organización es el cliente. Los clientes son las personas que llegan a una organización en búsqueda de satisfacer necesidades a través de los bienes y servicios que las empresas ofrecen. Es esencial determinar que los clientes viven en comunidad, es decir comparten ideas por la comunicación tan estrecha que tienen y viven en conjunto bajo las mismas costumbres. Debido a estos es que hoy en día, los consumidores se conglomeran en comunidades de clientes, y para saberles llegar a estos clientes, toca analizarlos por medio de diversos métodos. El uso de las estrategias comunitarias es necesario ya que por medio del marketing se analiza el entorno y se buscan los métodos para analizar a la comunidad de clientes, que comparten características y se analizan en conjunto no por individuo. Es necesario identificar los métodos para relacionarse con la comunidad de clientes, para poder acercarnos a estos y conocerlos bien, saber sus necesidades y deseos y ofrecerles productos y servicios de acuerdo a éstos. En la actualidad estos métodos no son muy comunes ni conocidos, es por esto que nuestro propósito es indagar e identificar estos métodos para saber analizar a las comunidades. En este proyecto se utilizara una metodología de estudio tipo teórico-conceptual buscando las fuentes de información necesarias para llevar a cabo nuestra investigación. Se considera trabajar con El Grupo de Investigación en Perdurabilidad Empresarial y se escogió la línea de gerencia ya que permite entrar en la sociedad del conocimiento, siendo capaces de identificar oportunidades gerenciales en el entorno. Es interesante investigar sobre estos métodos, ya que los clientes esperan un servicio excelente, atento y que se preocupe por ellos y sus necesidades.