865 resultados para Net Income from Land Use
Resumo:
[1] Photochemical and microbial transformations of DOM were evaluated in headwater streams draining forested and human-modified lands (pasture, cropland, and urban development) by laboratory incubations. Changes in DOC concentrations, DOC isotopic signatures, and DOM fluorescence properties were measured to assess the amounts, sources, ages, and properties of reactive and refractory DOM under the influence of photochemistry and/or bacteria. DOC in streams draining forest-dominated watersheds was more photoreactive than in streams draining mostly human-modified watersheds, possibly due to greater contributions of terrestrial plant-derived DOC and lower amounts of prior light exposure in forested streams. Overall, the percentage of photoreactive DOC in stream waters was best predicted by the relative content of terrestrial fluorophores. The bioreactivity of DOC was similar in forested and human-modified streams, but variations were correlated with temperature and may be further controlled by the diagenetic status of organic matter. Alterations to DOC isotopes and DOM fluorescence properties during photochemical and microbial incubations were similar between forested and human-modified streams and included (1) negligible effects of microbial alteration on DOC isotopes and DOM fluorescence properties, (2) selective removal of 13C-depleted and 14C-enriched DOC under the combined influence of photochemical and microbial processes, and (3) photochemical alteration of DOM resulting in a preferential loss of terrestrial humic fluorescence components relative to microbial fluorescence components. This study provides a unique comparison of DOC reactivity in a regional group of streams draining forested and human-modified watersheds and indicates the importance of land use on the photoreactivity of DOC exported from upstream watersheds.
Resumo:
Insect biodiversity is unevenly distributed on local, regional, and global scales. Elevation is a key factor in the uneven distribution of insect diversity, serving as a proxy for a host of environmental variables. My study examines the relationship of Heteroptera (true bugs) species diversity, abundance, and morphology to elevational gradients and land-use regimes on Mt. Kilimanjaro, Tanzania, East Africa. Heteroptera specimens were collected from 60 research sites covering an elevational range of 3684m (866-4550m above sea level). Thirty of the sites were classified as natural, while the remaining 30 were classified as disturbed (e.g., agricultural use or converted to grasslands). I measured aspects of the body size of adult specimens and recorded their location of origin. I used regression models to analyze the relationships of Heteroptera species richness, abundance, and body measurements to elevation and land-use regime. Richness and abundance declined with greater elevation, controlling for land use. The declines were linear or logarithmic in form, depending on the model. Richness and abundance were greater in natural than disturbed sites, controlling for elevation. According to an interaction, richness decreased more in natural than disturbed sites with rising elevation. Body length increased as a quadratic function of elevation, adjusting for land use. Body width X length decreased as a logarithmic function of elevation, while leg length/body length decreased as a quadratic function. Leg length/body length was greater in disturbed than natural sites. Interactions indicated that body length and body width X length were greater in natural than disturbed sites as elevation rose, although the general trend was downward. Future research should examine the relative importance of land area, temperature, and resource constraints for Heteroptera diversity and morphology on Mt. Kilimanjaro.
Resumo:
Humans have used the land within the area currently defined as Dade County, Florida since around 11,000 B.P., but did not significantly alter the local environment until less than one hundred years ago. These recent changes greatly affected many critical ecological factors, thereby reducing the sustainability of many types of life, including humans. This study explains how land use evolved from earlier sustainable systems for satisfying human needs into the current menacing patterns. This is done by examining the environmental, technological, social, and cognitive contexts of land use through time. Changes in all these areas have followed a general trend leading to increasing intensity of land use and environmental change driven by population growth and technological innovation.
Resumo:
Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.
Resumo:
Despite the importance of tropical montane cloud forest streams, studies investigating aquatic communities in these regions are rare and knowledge on the driving factors of community structure is missing. The objectives of this study therefore were to understand how land-use influences habitat structure and macroinvertebrate communities in cloud forest streams of southern Ecuador. We evaluated these relationships in headwater streams with variable land cover, using multivariate statistics to identify relationships between key habitat variables and assemblage structure, and to resolve differences in composition among sites. Results show that shading intensity, substrate type and pH were the environmental parameters most closely related to variation in community composition observed among sites. In addition, macroinvertebrate density and partly diversity was lower in forested sites, possibly because the pH in forested streams lowered to almost 5 during spates. Standard bioindicator metrics were unable to detect the changes in assemblage structure between disturbed and forested streams. In general, our results indicate that tropical montane headwater streams are complex and heterogeneous ecosystems with low invertebrate densities. We also found that some amount of disturbance, i.e. patchy deforestation, can lead at least initially to an increase in macroinvertebrate taxa richness of these streams.
Resumo:
While mining is a major component of the northern Canadian economy, including the contemporary mixed economy of Aboriginal communities, it often leaves legacies of environmental and economic transformation that persist after closure. The legacies of historical mines in northern Canada challenge industry claims of sustainability. This thesis addresses how industrial mineral development and closure continue to affect local environments and economies after abandonment. The abandoned Pine Point mine in the Northwest Territories provides a case study for explaining the ongoing relationships among land cover, land use, and the post-industrial landscape. Drawing from landscape ecology and micropolitical ecology, I adopt an interdisciplinary approach to examine environmental and socioeconomic changes in the wake of industrial development and closure at Pine Point. The results show that passive reclamation is not sufficient for restoring ecological function in a subarctic environment. Land use, however, persists as land users adapt to the post-industrial landscape despite grave concern about its environmental condition. If mining is to be considered sustainable, decommissioning and reclamation must explicitly account for long-term environmental transformation as well as ongoing post-industrial land use, particularly in Aboriginal contexts.
Resumo:
Postprint
Resumo:
Publisher PDF
Resumo:
Increases in the rate and extent of lakeshore development along inland lakes in Ontario are adversely impacting water quality. Despite growing awareness, there is a lack of knowledge about the land use policies and tools in place to protect inland lakes in rural Ontario. This research evaluated official plans for water quality protection policies for inland lakes in the County of Renfrew, Ontario to address this gap. The findings suggest that municipalities implicitly link water quality to land use planning policy and fail to incorporate innovative methods to protect water quality.
Resumo:
This research explores the policy implications of the approval of three wind energy projects on the Oak Ridges Moraine, and their impact on the Coordinated Land Use Planning Review process. Specifically, it focuses on the involvement of First Nations and environmental non-governmental organizations (ENGOs). This research was conducted through analyzing submissions to the Coordinated Land Use Planning Review, related legislation and policy, Environmental Review Tribunal hearing documents, and interviews with key informants. This research culminates in a number of recommendations to the Coordinated Review informed by the analysis.
Resumo:
Landnutzungsänderungen sind eine wesentliche Ursache von Treibhausgasemissionen. Die Umwandlung von Ökosystemen mit permanenter natürlicher Vegetation hin zu Ackerbau mit zeitweise vegetationslosem Boden (z.B. nach der Bodenbearbeitung vor der Aussaat) führt häufig zu gesteigerten Treibhausgasemissionen und verminderter Kohlenstoffbindung. Weltweit dehnt sich Ackerbau sowohl in kleinbäuerlichen als auch in agro-industriellen Systemen aus, häufig in benachbarte semiaride bis subhumide Rangeland Ökosysteme. Die vorliegende Arbeit untersucht Trends der Landnutzungsänderung im Borana Rangeland Südäthiopiens. Bevölkerungswachstum, Landprivatisierung und damit einhergehende Einzäunung, veränderte Landnutzungspolitik und zunehmende Klimavariabilität führen zu raschen Veränderungen der traditionell auf Tierhaltung basierten, pastoralen Systeme. Mittels einer Literaturanalyse von Fallstudien in ostafrikanischen Rangelands wurde im Rahmen dieser Studie ein schematisches Modell der Zusammenhänge von Landnutzung, Treibhausgasemissionen und Kohlenstofffixierung entwickelt. Anhand von Satellitendaten und Daten aus Haushaltsbefragungen wurden Art und Umfang von Landnutzungsänderungen und Vegetationsveränderungen an fünf Untersuchungsstandorten (Darito/Yabelo Distrikt, Soda, Samaro, Haralo, Did Mega/alle Dire Distrikt) zwischen 1985 und 2011 analysiert. In Darito dehnte sich die Ackerbaufläche um 12% aus, überwiegend auf Kosten von Buschland. An den übrigen Standorten blieb die Ackerbaufläche relativ konstant, jedoch nahm Graslandvegetation um zwischen 16 und 28% zu, während Buschland um zwischen 23 und 31% abnahm. Lediglich am Standort Haralo nahm auch „bare land“, vegetationslose Flächen, um 13% zu. Faktoren, die zur Ausdehnung des Ackerbaus führen, wurden am Standort Darito detaillierter untersucht. GPS Daten und anbaugeschichtlichen Daten von 108 Feldern auf 54 Betrieben wurden in einem Geographischen Informationssystem (GIS) mit thematischen Boden-, Niederschlags-, und Hangneigungskarten sowie einem Digitales Höhenmodell überlagert. Multiple lineare Regression ermittelte Hangneigung und geographische Höhe als signifikante Erklärungsvariablen für die Ausdehnung von Ackerbau in niedrigere Lagen. Bodenart, Entfernung zum saisonalen Flusslauf und Niederschlag waren hingegen nicht signifikant. Das niedrige Bestimmtheitsmaß (R²=0,154) weist darauf hin, dass es weitere, hier nicht erfasste Erklärungsvariablen für die Richtung der räumlichen Ausweitung von Ackerland gibt. Streudiagramme zu Ackergröße und Anbaujahren in Relation zu geographischer Höhe zeigen seit dem Jahr 2000 eine Ausdehnung des Ackerbaus in Lagen unter 1620 müNN und eine Zunahme der Schlaggröße (>3ha). Die Analyse der phänologischen Entwicklung von Feldfrüchten im Jahresverlauf in Kombination mit Niederschlagsdaten und normalized difference vegetation index (NDVI) Zeitreihendaten dienten dazu, Zeitpunkte besonders hoher (Begrünung vor der Ernte) oder niedriger (nach der Bodenbearbeitung) Pflanzenbiomasse auf Ackerland zu identifizieren, um Ackerland und seine Ausdehnung von anderen Vegetationsformen fernerkundlich unterscheiden zu können. Anhand der NDVI Spektralprofile konnte Ackerland gut Wald, jedoch weniger gut von Gras- und Buschland unterschieden werden. Die geringe Auflösung (250m) der Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI Daten führte zu einem Mixed Pixel Effect, d.h. die Fläche eines Pixels beinhaltete häufig verschiedene Vegetationsformen in unterschiedlichen Anteilen, was deren Unterscheidung beeinträchtigte. Für die Entwicklung eines Echtzeit Monitoring Systems für die Ausdehnung des Ackerbaus wären höher auflösende NDVI Daten (z.B. Multispektralband, Hyperion EO-1 Sensor) notwendig, um kleinräumig eine bessere Differenzierung von Ackerland und natürlicher Rangeland-Vegetation zu erhalten. Die Entwicklung und der Einsatz solcher Methoden als Entscheidungshilfen für Land- und Ressourcennutzungsplanung könnte dazu beitragen, Produktions- und Entwicklungsziele der Borana Landnutzer mit nationalen Anstrengungen zur Eindämmung des Klimawandels durch Steigerung der Kohlenstofffixierung in Rangelands in Einklang zu bringen.
Resumo:
We present a new method for ecologically sustainable land use planning within multiple land use schemes. Our aims were (1) to develop a method that can be used to locate important areas based on their ecological values; (2) to evaluate the quality, quantity, availability, and usability of existing ecological data sets; and (3) to demonstrate the use of the method in Eastern Finland, where there are requirements for the simultaneous development of nature conservation, tourism, and recreation. We compiled all available ecological data sets from the study area, complemented the missing data using habitat suitability modeling, calculated the total ecological score (TES) for each 1 ha grid cell in the study area, and finally, demonstrated the use of TES in assessing the success of nature conservation in covering ecologically valuable areas and locating ecologically sustainable areas for tourism and recreational infrastructure. The method operated quite well at the level required for regional and local scale planning. The quality, quantity, availability, and usability of existing data sets were generally high, and they could be further complemented by modeling. There are still constraints that limit the use of the method in practical land use planning. However, as increasing data become available and open access, and modeling tools improve, the usability and applicability of the method will increase.
Resumo:
In 2013 the European Commission launched its new green infrastructure strategy to make another attempt to stop and possibly reverse the loss of biodiversity until 2020, by connecting habitats in the wider landscape. This means that conservation would go beyond current practices to include landscapes that are dominated by conventional agriculture, where biodiversity conservation plays a minor role at best. The green infrastructure strategy aims at bottom-up rather than top-down implementation, and suggests including local and regional stakeholders. Therefore, it is important to know which stakeholders influence land-use decisions concerning green infrastructure at the local and regional level. The research presented in this paper served to select stakeholders in preparation for a participatory scenario development process to analyze consequences of different implementation options of the European green infrastructure strategy. We used a mix of qualitative and quantitative social network analysis (SNA) methods to combine actors’ attributes, especially concerning their perceived influence, with structural and relational measures. Further, our analysis provides information on institutional backgrounds and governance settings for green infrastructure and agricultural policy. The investigation started with key informant interviews at the regional level in administrative units responsible for relevant policies and procedures such as regional planners, representatives of federal ministries, and continued at the local level with farmers and other members of the community. The analysis revealed the importance of information flows and regulations but also of social pressure, considerably influencing biodiversity governance with respect to green infrastructure and biodiversity.
Resumo:
Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
Resumo:
The current Amazon landscape consists of heterogeneous mosaics formed by interactions between the original forest and productive activities. Recognizing and quantifying the characteristics of these landscapes is essential for understanding agricultural production chains, assessing the impact of policies, and in planning future actions. Our main objective was to construct the regionalization of agricultural production for Rondônia State (Brazilian Amazon) at the municipal level. We adopted a decision tree approach, using land use maps derived from remote sensing data (PRODES and TerraClass) combined with socioeconomic data. The decision trees allowed us to allocate municipalities to one of five agricultural production systems: (i) coexistence of livestock production and intensive agriculture; (ii) semi-intensive beef and milk production; (iii) semi-intensive beef production; (iv) intensive beef and milk production, and; (v) intensive beef production. These production systems are, respectively, linked to mechanized agriculture (i), traditional cattle farming with low management, with (ii) or without (iii) a significant presence of dairy farming, and to more intensive livestock farming with (iv) or without (v) a significant presence of dairy farming. The municipalities and associated production systems were then characterized using a wide variety of quantitative metrics grouped into four dimensions: (i) agricultural production; (ii) economics; (iii) territorial configuration, and; (iv) social characteristics. We found that production systems linked to mechanized agriculture predominate in the south of the state, while intensive farming is mainly found in the center of the state. Semi-intensive livestock farming is mainly located close to the southwest frontier and in the north of the state, where human occupation of the territory is not fully consolidated. This distributional pattern reflects the origins of the agricultural production system of Rondônia. Moreover, the characterization of the production systems provides insights into the pattern of occupation of the Amazon and the socioeconomic consequences of continuing agricultural expansion.