294 resultados para Nepenthes.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-fold expansion of the Antarctic ice sheet at 13.60, 12.82, and 11.60 Ma has been inferred from delta18O maxima analyzed in planktonic and benthic foraminiferal tests, although accompanying changes in sea surface temperature have not been detailed. We present estimated changes in middle Miocene surface-water temperatures based on analysis of delta18O in planktonic foraminifera collected at mid-latitude Deep Sea Drilling Project sites in the North Atlantic and South Pacific oceans. We also identify periods of ice-sheet growth based on comparisons of benthic and planktonic foraminiferal delta18O values. Our results indicate: (1) a distinct cooling of the sea surface from 13.6 to 13.5 Ma immediately following a peak in ice volume at 13.6 Ma, (2) a cooling of the sea surface during a period of increasing ice volume from 13.2 to 13.0 Ma, and (3) a development of the Antarctic ice sheet during a period of cooling of the sea surface centered at 11.6 Ma.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over 30 first and last occurrence (FO and LO, respectively) planktonic foraminifer datums were recognized from the Oligocene-Miocene section of Ocean Drilling Program (ODP) Site 1148. Most datum levels occur in similar order as, and are by correlation as probably synchronous with, their open-ocean records. Several datum levels represent local bioevents resulting from dissolution and Site 1148's unique paleoceanographic setting in the northern South China Sea. An age of 9.5-9.8 Ma is estimated for the local LO of Globoquadrina dehiscens (257 meters composite depth [mcd]), whereas the local LO of Globorotalia fohsi s.l. (301 mcd) is projected to be at ~13.0 Ma and the local FO of Globigerinatella insueta (367 mcd) is projected to be at ~18.0 Ma. The combined planktonic foraminifer and nannofossil results indicate that the Oligocene-Miocene section at Site 1148 is not complete. Unconformities up to 2-3 m.y. in duration, occurring at and before the Oligocene/Miocene boundary (OHS1, OHS2, OHS3, and OHS4 = MHS1), are associated with slump deposits between 457 and 495 mcd that signal tectonic instability during the transition from rifting to spreading in the South China Sea. Shorter unconformities of <0.5 m.y. duration that truncate the Miocene section were more likely to have been caused by sea-bottom erosion as well as dissolution. A total of 12 Miocene unconformities, MHS1 through MHS12, are mainly affected by dissolution and an elevated carbonate compensation depth (CCD) during Miocene third-order glaciations recorded in deep-sea positive oxygen isotope Mi glaciation events. Respectively, they fall at ~457 mcd (MHS1 = Mi-1), 407 mcd (MHS2 = Mi-1a), 385 mcd (MHS3 = Mi-1aa), 366 mcd (MHS4 = Mi-1b), 358 mcd (MHS5 = MLi-1), 333 mcd (MHS6 = Mi-2), 318 mcd (MHS7 = MSi-1), 308 mcd (MHS8 = Mi-3), 295 mcd (MHS9 = Mi-4), 288 mcd (MHS10 = Mi-5), 256 mcd (MHS11 = Mi-6), and 250 mcd (MHS12 = Mi-7). The correlation of these unconformities with Mi events indicates that some related driving mechanisms have been operating, causing deepwater circulation changes concomitantly in world oceans and in the marginal South China Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High biogenic sedimentation rates in the late Neogene at DSDP Site 590 (1293 m) provide an exceptional opportunity to evaluate late Neogene (late Miocene to latest Pliocene) paleoceanography in waters transitional between temperate and warm-subtropical water masses. Oxygen and carbon isotope analyses and quantitative planktonic foraminiferal data have been used to interpret the late Neogene paleoceanographic evolution of this site. Faunal and isotopic data from Site 590 show a progression of paleoceanographic events between 6.7 and 4.3 Ma, during the latest Miocene and early Pliocene. First, a permanent depletion in both planktonic and benthic foraminiferal d13C, between 6.7 and 6.2 Ma, can be correlated to the globally recognized late Miocene carbon isotope shift. Second, a 0.5 per mil enrichment in benthic foraminiferal d18O between 5.6 and 4.7 Ma in the latest Miocene to early Pliocene corresponds to the latest Miocene oxygen isotopic enrichment at Site 284, located in temperate waters south of Site 590. This enrichment in d18O coincides with a time of cool surface waters, as is suggested by high frequencies of Neogloboquadrina pachyderma and low frequencies of the warmer-water planktonic foraminifers, as well as by an enrichment in planktonic foraminiferal d18O relative to the earlier Miocene. By 4.6 Ma, benthic foraminiferal d18O values become depleted and remain fairly stable until about 3.8 Ma. The early Pliocene (~4.3 to 3.2 Ma) is marked by a significant increase in biogenic sedimentation rates (37.7 to 83.3 m/m.y.). During this time, heaviest values in planktonic foraminiferal d18O are associated with a decrease in the gradient between surface and intermediate-water d13C and d18O, a 1.0 per mil depletion in the d13C of two species of planktonic foraminifers, and a mixture of warm and cool planktonic foraminiferal elements. These data suggest that localized upwelling at the Subtropical Divergence produced an increase in surface-water productivity during the early Pliocene. A two-step enrichment in benthic foraminiferal d18O occurs in the late Pliocene sequence at Site 590. A 0.3 per mil average enrichment at about 3.6 Ma is followed by a 0.5 per mil enrichment at 2.7 Ma. These two events can be correlated with the two-step isotopic enrichment associated with late Pliocene climatic instability and the initiation of Northern Hemisphere glaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lebenslauf .