913 resultados para Nearest Neighbour


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: With the large amount of biological data that is currently publicly available, many investigators combine multiple data sets to increase the sample size and potentially also the power of their analyses. However, technical differences ("batch effects") as well as differences in sample composition between the data sets may significantly affect the ability to draw generalizable conclusions from such studies. FOCUS: The current study focuses on the construction of classifiers, and the use of cross-validation to estimate their performance. In particular, we investigate the impact of batch effects and differences in sample composition between batches on the accuracy of the classification performance estimate obtained via cross-validation. The focus on estimation bias is a main difference compared to previous studies, which have mostly focused on the predictive performance and how it relates to the presence of batch effects. DATA: We work on simulated data sets. To have realistic intensity distributions, we use real gene expression data as the basis for our simulation. Random samples from this expression matrix are selected and assigned to group 1 (e.g., 'control') or group 2 (e.g., 'treated'). We introduce batch effects and select some features to be differentially expressed between the two groups. We consider several scenarios for our study, most importantly different levels of confounding between groups and batch effects. METHODS: We focus on well-known classifiers: logistic regression, Support Vector Machines (SVM), k-nearest neighbors (kNN) and Random Forests (RF). Feature selection is performed with the Wilcoxon test or the lasso. Parameter tuning and feature selection, as well as the estimation of the prediction performance of each classifier, is performed within a nested cross-validation scheme. The estimated classification performance is then compared to what is obtained when applying the classifier to independent data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[spa] La política de Vecindad de la Unión Europea se acostumbra a interpretar como un instrumento de europeización forzada. Gracias a su fuerza de negociación, la Unión Europea impondría a sus vecinos su modelo económico y hasta político y social. Esta sin embargo no es la evidencia que se obtiene en el ámbito del comercio. En consonancia con el modelo teórico de relaciones exteriores desarrollado por varios investigadores bajo la dirección de Esther Barbé, observamos como, en el ámbito comercial, el modelo de relaciones entre la Unión Europea y cuatro países de la política de Vecindad puede ser tanto de europeización como también de internacionalización o de coordinación. El tipo de modelo aplicado viene condicionado, como asevera el marco teórico, por el cumplimiento de las condiciones necesarias que se requieren para que Europa imponga sus normas: legitimidad, incentivos y coherencia interna. Estas condiciones varían en función tanto del tema tratado como del país vecino.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we examine whether access to markets had a significant influence onmigration choices of Spanish internal migrants in the inter-war years. We perform astructural contrast of a New Economic Geography model that focus on the forwardlinkage that links workers location choice with the geography of industrial production,one of the centripetal forces that drive agglomeration in the NEG models. The resultshighlight the presence of this forward linkage in the Spanish economy of the inter-warperiod. That is, we prove the existence of a direct relation between workers¿ localizationdecisions and the market potential of the host regions. In addition, the direct estimationof the values associated with key parameters in the NEG model allows us to simulatethe migratory flows derived from different scenarios of the relative size of regions andthe distances between them. We show that in Spain the power of attraction of theagglomerations grew as they increased in size, but the high elasticity estimated for themigration costs reduced the intensity of the migratory flows. This could help to explainthe apparently low intensity of internal migrations in Spain until its upsurge during the1920s. This also explains the geography of migrations in Spain during this period,which hardly affected the regions furthest from the large industrial agglomerations (i.e.,regions such as Andalusia, Estremadura and Castile-La Mancha) but had an intenseeffect on the provinces nearest to the principal centres of industrial development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[spa] La política de Vecindad de la Unión Europea se acostumbra a interpretar como un instrumento de europeización forzada. Gracias a su fuerza de negociación, la Unión Europea impondría a sus vecinos su modelo económico y hasta político y social. Esta sin embargo no es la evidencia que se obtiene en el ámbito del comercio. En consonancia con el modelo teórico de relaciones exteriores desarrollado por varios investigadores bajo la dirección de Esther Barbé, observamos como, en el ámbito comercial, el modelo de relaciones entre la Unión Europea y cuatro países de la política de Vecindad puede ser tanto de europeización como también de internacionalización o de coordinación. El tipo de modelo aplicado viene condicionado, como asevera el marco teórico, por el cumplimiento de las condiciones necesarias que se requieren para que Europa imponga sus normas: legitimidad, incentivos y coherencia interna. Estas condiciones varían en función tanto del tema tratado como del país vecino.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Domain growth in a system with nonconserved order parameter is studied. We simulate the usual Ising model for binary alloys with concentration 0.5 on a two-dimensional square lattice by Monte Carlo techniques. Measurements of the energy, jump-acceptance ratio, and order parameters are performed. Dynamics based on the diffusion of a single vacancy in the system gives a growth law faster than the usual Allen-Cahn law. Allowing vacancy jumps to next-nearest-neighbor sites is essential to prevent vacancy trapping in the ordered regions. By measuring local order parameters we show that the vacancy prefers to be in the disordered regions (domain boundaries). This naturally concentrates the atomic jumps in the domain boundaries, accelerating the growth compared with the usual exchange mechanism that causes jumps to be homogeneously distributed on the lattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An Ising-like model, with interactions ranging up to next-nearest-neighbor pairs, is used to simulate the process of interface alloying. Interactions are chosen to stabilize an intermediate "antiferromagnetic" ordered structure. The dynamics proceeds exclusively by atom-vacancy exchanges. In order to characterize the process, the time evolution of the width of the intermediate ordered region and the diffusion length is studied. Both lengths are found to follow a power-law evolution with exponents depending on the characteristic features of the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Monte Carlo study of the late time growth of L12-ordered domains in a fcc A3B binary alloy is presented. The energy of the alloy has been modeled by a nearest-neighbor interaction Ising Hamiltonian. The system exhibits a fourfold degenerated ground state and two kinds of interfaces separating ordered domains: flat and curved antiphase boundaries. Two different dynamics are used in the simulations: the standard atom-atom exchange mechanism and the more realistic vacancy-atom exchange mechanism. The results obtained by both methods are compared. In particular we study the time evolution of the excess energy, the structure factor and the mean distance between walls. In the case of atom-atom exchange mechanism anisotropic growth has been found: two characteristic lengths are needed in order to describe the evolution. Contrarily, with the vacancyatom exchange mechanism scaling with a single length holds. Results are contrasted with existing experiments in Cu3Au and theories for anisotropic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model for the study of hysteresis and avalanches in a first-order phase transition from a single variant phase to a multivariant phase is presented. The model is based on a modification of the random-field Potts model with metastable dynamics by adding a dipolar interaction term truncated at nearest neighbors. We focus our study on hysteresis loop properties, on the three-dimensional microstructure formation, and on avalanche statistics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Ecotones are sensitive to change because they contain high numbers of species living at the margin of their environmental tolerance. This is equally true of tree-lines, which are determined by attitudinal or latitudinal temperature gradients. In the current context of climate change, they are expected to undergo modifications in position, tree biomass and possibly species composition. Attitudinal and latitudinal tree-lines differ mainly in the steepness of the underlying temperature gradient: distances are larger at latitudinal tree-lines, which could have an impact on the ability of tree species to migrate in response to climate change. Aside from temperature, tree-lines are also affected on a more local level by pressure from human activities. These are also changing as a consequence of modifications in our societies and may interact with the effects of climate change. Forest dynamics models are often used for climate change simulations because of their mechanistic processes. The spatially-explicit model TreeMig was used as a base to develop a model specifically tuned for the northern European and Alpine tree-line ecotones. For the latter, a module for land-use change processes was also added. The temperature response parameters for the species in the model were first calibrated by means of tree-ring data from various species and sites at both tree-lines. This improved the growth response function in the model, but also lead to the conclusion that regeneration is probably more important than growth for controlling tree-line position and species' distributions. The second step was to implement the module for abandonment of agricultural land in the Alps, based on an existing spatial statistical model. The sensitivity of its most important variables was tested and the model's performance compared to other modelling approaches. The probability that agricultural land would be abandoned was strongly influenced by the distance from the nearest forest and the slope, bath of which are proxies for cultivation costs. When applied to a case study area, the resulting model, named TreeMig-LAb, gave the most realistic results. These were consistent with observed consequences of land-abandonment such as the expansion of the existing forest and closing up of gaps. This new model was then applied in two case study areas, one in the Swiss Alps and one in Finnish Lapland, under a variety of climate change scenarios. These were based on forecasts of temperature change over the next century by the IPCC and the HadCM3 climate model (ΔT: +1.3, +3.5 and +5.6 °C) and included a post-change stabilisation period of 300 years. The results showed radical disruptions at both tree-lines. With the most conservative climate change scenario, species' distributions simply shifted, but it took several centuries reach a new equilibrium. With the more extreme scenarios, some species disappeared from our study areas (e.g. Pinus cembra in the Alps) or dwindled to very low numbers, as they ran out of land into which they could migrate. The most striking result was the lag in the response of most species, independently from the climate change scenario or tree-line type considered. Finally, a statistical model of the effect of reindeer (Rangifer tarandus) browsing on the growth of Pinus sylvestris was developed, as a first step towards implementing human impacts at the boreal tree-line. The expected effect was an indirect one, as reindeer deplete the ground lichen cover, thought to protect the trees against adverse climate conditions. The model showed a small but significant effect of browsing, but as the link with the underlying climate variables was unclear and the model was not spatial, it was not usable as such. Developing the TreeMig-LAb model allowed to: a) establish a method for deriving species' parameters for the growth equation from tree-rings, b) highlight the importance of regeneration in determining tree-line position and species' distributions and c) improve the integration of social sciences into landscape modelling. Applying the model at the Alpine and northern European tree-lines under different climate change scenarios showed that with most forecasted levels of temperature increase, tree-lines would suffer major disruptions, with shifts in distributions and potential extinction of some tree-line species. However, these responses showed strong lags, so these effects would not become apparent before decades and could take centuries to stabilise. Résumé Les écotones son sensibles au changement en raison du nombre élevé d'espèces qui y vivent à la limite de leur tolérance environnementale. Ceci s'applique également aux limites des arbres définies par les gradients de température altitudinaux et latitudinaux. Dans le contexte actuel de changement climatique, on s'attend à ce qu'elles subissent des modifications de leur position, de la biomasse des arbres et éventuellement des essences qui les composent. Les limites altitudinales et latitudinales diffèrent essentiellement au niveau de la pente des gradients de température qui les sous-tendent les distance sont plus grandes pour les limites latitudinales, ce qui pourrait avoir un impact sur la capacité des espèces à migrer en réponse au changement climatique. En sus de la température, la limite des arbres est aussi influencée à un niveau plus local par les pressions dues aux activités humaines. Celles-ci sont aussi en mutation suite aux changements dans nos sociétés et peuvent interagir avec les effets du changement climatique. Les modèles de dynamique forestière sont souvent utilisés pour simuler les effets du changement climatique, car ils sont basés sur la modélisation de processus. Le modèle spatialement explicite TreeMig a été utilisé comme base pour développer un modèle spécialement adapté pour la limite des arbres en Europe du Nord et dans les Alpes. Pour cette dernière, un module servant à simuler des changements d'utilisation du sol a également été ajouté. Tout d'abord, les paramètres de la courbe de réponse à la température pour les espèces inclues dans le modèle ont été calibrées au moyen de données dendrochronologiques pour diverses espèces et divers sites des deux écotones. Ceci a permis d'améliorer la courbe de croissance du modèle, mais a également permis de conclure que la régénération est probablement plus déterminante que la croissance en ce qui concerne la position de la limite des arbres et la distribution des espèces. La seconde étape consistait à implémenter le module d'abandon du terrain agricole dans les Alpes, basé sur un modèle statistique spatial existant. La sensibilité des variables les plus importantes du modèle a été testée et la performance de ce dernier comparée à d'autres approches de modélisation. La probabilité qu'un terrain soit abandonné était fortement influencée par la distance à la forêt la plus proche et par la pente, qui sont tous deux des substituts pour les coûts liés à la mise en culture. Lors de l'application en situation réelle, le nouveau modèle, baptisé TreeMig-LAb, a donné les résultats les plus réalistes. Ceux-ci étaient comparables aux conséquences déjà observées de l'abandon de terrains agricoles, telles que l'expansion des forêts existantes et la fermeture des clairières. Ce nouveau modèle a ensuite été mis en application dans deux zones d'étude, l'une dans les Alpes suisses et l'autre en Laponie finlandaise, avec divers scénarios de changement climatique. Ces derniers étaient basés sur les prévisions de changement de température pour le siècle prochain établies par l'IPCC et le modèle climatique HadCM3 (ΔT: +1.3, +3.5 et +5.6 °C) et comprenaient une période de stabilisation post-changement climatique de 300 ans. Les résultats ont montré des perturbations majeures dans les deux types de limites de arbres. Avec le scénario de changement climatique le moins extrême, les distributions respectives des espèces ont subi un simple glissement, mais il a fallu plusieurs siècles pour qu'elles atteignent un nouvel équilibre. Avec les autres scénarios, certaines espèces ont disparu de la zone d'étude (p. ex. Pinus cembra dans les Alpes) ou ont vu leur population diminuer parce qu'il n'y avait plus assez de terrains disponibles dans lesquels elles puissent migrer. Le résultat le plus frappant a été le temps de latence dans la réponse de la plupart des espèces, indépendamment du scénario de changement climatique utilisé ou du type de limite des arbres. Finalement, un modèle statistique de l'effet de l'abroutissement par les rennes (Rangifer tarandus) sur la croissance de Pinus sylvestris a été développé, comme première étape en vue de l'implémentation des impacts humains sur la limite boréale des arbres. L'effet attendu était indirect, puisque les rennes réduisent la couverture de lichen sur le sol, dont on attend un effet protecteur contre les rigueurs climatiques. Le modèle a mis en évidence un effet modeste mais significatif, mais étant donné que le lien avec les variables climatiques sous jacentes était peu clair et que le modèle n'était pas appliqué dans l'espace, il n'était pas utilisable tel quel. Le développement du modèle TreeMig-LAb a permis : a) d'établir une méthode pour déduire les paramètres spécifiques de l'équation de croissance ä partir de données dendrochronologiques, b) de mettre en évidence l'importance de la régénération dans la position de la limite des arbres et la distribution des espèces et c) d'améliorer l'intégration des sciences sociales dans les modèles de paysage. L'application du modèle aux limites alpines et nord-européennes des arbres sous différents scénarios de changement climatique a montré qu'avec la plupart des niveaux d'augmentation de température prévus, la limite des arbres subirait des perturbations majeures, avec des glissements d'aires de répartition et l'extinction potentielle de certaines espèces. Cependant, ces réponses ont montré des temps de latence importants, si bien que ces effets ne seraient pas visibles avant des décennies et pourraient mettre plusieurs siècles à se stabiliser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-, next-nearest-, and four-spin (plaquette) interactions. During coarsening, such models develop growing energy barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation, and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably related with a certain corner-rounding transition. However, for a particular choice of interaction constants, when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising model domain walls lose their tension at the glassy transition and that they are basically tensionless in the glassy phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a lattice-gas model of particles with internal orientational degrees of freedom. In addition to antiferromagnetic nearest-neighbor (NN) and next-nearest-neighbor (NNN) positional interactions we also consider NN and NNN interactions arising from the internal state of the particles. The system then shows positional and orientational ordering modes with associated phase transitions at Tp and To temperatures at which long-range positional and orientational ordering are, respectively, lost. We use mean-field techniques to obtain a general approach to the study of these systems. By considering particular forms of the orientational interaction function we study coupling effects between both phase transitions arising from the interplay between orientational and positional degrees of freedom. In mean-field approximation coupling effects appear only for the phase transition taking place at lower temperatures. The strength of the coupling depends on the value of the long-range order parameter that remains finite at that temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper deals with the development and application of the generic methodology for automatic processing (mapping and classification) of environmental data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve the problem of spatial data mapping (regression). The Probabilistic Neural Network (PNN) is considered as an automatic tool for spatial classifications. The automatic tuning of isotropic and anisotropic GRNN/PNN models using cross-validation procedure is presented. Results are compared with the k-Nearest-Neighbours (k-NN) interpolation algorithm using independent validation data set. Real case studies are based on decision-oriented mapping and classification of radioactively contaminated territories.