934 resultados para NO-DONORS
Resumo:
Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation >50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n = 11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and beta 2-microglobulin ((beta 2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) is a well-characterized and functionally important merozoite protein and is currently considered a major candidate antigen for a malaria vaccine. Previously, we showed that AMA-1 has an influence on cellular immune responses of malaria-naive subjects, resulting in an alternative activation of monocyte-derived dendritic cells and induction of a pro-inflammatory response by stimulated PBMCs. Although there is evidence, from human and animal malaria model systems that cell-mediated immunity may contribute to both protection and pathogenesis, the knowledge on cellular immune responses in vivax malaria and the factors that may regulate this immunity are poorly understood. In the current work, we describe the maturation of monocyte-derived dendritic cells of P. vivax naturally infected individuals and the effect of P. vivax vaccine candidate Pv-AMA-1 on the immune responses of the same donors. We show that malaria-infected subjects present modulation of DC maturation, demonstrated by a significant decrease in expression of antigen-presenting molecules (CD1a, HLA-ABC and HLA-DR), accessory molecules (CD40, CD80 and CD86) and Fc gamma RI (CD64) receptor (P <= 0.05). Furthermore, Pv-AMA-1 elicits an upregulation of CD1a and HLA-DR molecules on the surface of monocyte-derived dendritic cells (P=0.0356 and P=0.0196, respectively), and it is presented by AMA-1-stimulated DCs. A significant pro-inflammatory response elicited by Pv-AMA-1-pulsed PBMCs is also demonstrated, as determined by significant production of TNF-alpha, IL-12p40 and IFN-gamma (P <= 0.05). Our results suggest that Pv-AMA-1 may partially revert DC down-modulation observed in infected subjects, and exert an important role in the initiation of pro-inflammatory immunity that might contribute substantially to protection. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aims: Development of a simple, specific, rapid and inexpensive Dot-ELISA test for early diagnosis of human leptospirosis. Methods and Results: Serum samples from 90 patients diagnosed with leptospirosis were analysed by Dot-ELISA test incorporating Glycolipoprotein (GLP) antigen from serovars Copenhageni and Patoc. Results were compared with those obtained with microscopic agglutination test, currently, the gold standard reference serological method. Serum samples from healthy blood bank donors and patients diagnosed with diseases other than leptospirosis were used as negative controls. The specificities of both GLP-based assays were 97 center dot 1% and 100% with serum samples from patients with other diseases and with serum samples from healthy control group, respectively. With serum samples from patients with acute leptospirosis, sensitivity was 76 center dot 6% with Dot-ELISA Copenhageni and 90 center dot 0% with Dot-ELISA Patoc. With serum samples from patients in convalescence, sensitivity was 100% with both GLP-based assays. Conclusions: This Dot-ELISA provides a candidate antigen for serodiagnosis of leptospirosis during all phases of illness and could be a good alternative method for the early diagnosis of leptospirosis. Significance and Impact of the Study: The Dot-ELISA test is simple, specific, rapid and inexpensive. It is suitable for identifying a large number of samples and, hence, reducing the death rate of patients with leptospirosis.
Resumo:
Fluorescent proteins from the green fluorescent protein family strongly interact with CdSe/ZnS and ZnSe/ZnS nanocrystals at neutral pH. Green emitting CdSe/ZnS nanocrystals and red emitting fluorescent protein dTomato constitute a 72% efficiency FRET system with the largest alteration of the overall photoluminescence profile, following complex formation, observed so far. The substitution of ZnSe/ZnS for CdSe/ZnS nanocrystals as energy donors enabled the use of a green fluorescent protein, GFP5, as energy acceptor. Violet emitting ZnSe/ZnS nanocrystals and green GFP5 constitute a system with 43% FRET efficiency and an unusually strong sensitized emission. ZnSe/ZnS-GFP5 provides a cadmium-free, high-contrast FRET system that covers only the high-energy part of the visible spectrum, leaving room for simultaneous use of the yellow and red color channels. Anisotropic fluorescence measurements confirmed the depolarization of GFP5 sensitized emission.
Resumo:
Objective-Nitro-fatty acids (NO(2)-FAs) are emerging as a new class of cell signaling mediators. Because NO(2)-FAs are found in the vascular compartment and their impact on vascularization remains unknown, we aimed to investigate the role of NO(2)-FAs in angiogenesis. Methods and Results-The effects of nitrolinoleic acid and nitrooleic acid were evaluated on migration of endothelial cell (EC) in vitro, EC sprouting ex vivo, and angiogenesis in the chorioallantoic membrane assay in vivo. At 10 mu mol/L, both NO(2)-FAs induced EC migration and the formation of sprouts and promoted angiogenesis in vivo in an NO-dependent manner. In addition, NO(2)-FAs increased intracellular NO concentration, upregulated protein expression of the hypoxia inducible factor-1 alpha (HIF-1 alpha) transcription factor by an NO-mediated mechanism, and induced expression of HIF-1 alpha target genes, such as vascular endothelial growth factor, glucose transporter-1, and adrenomedullin. Compared with typical NO donors such as spermine-NONOate and deta-NONOate, NO(2)-FAs were slightly less potent inducers of EC migration and HIF-1 alpha expression. Short hairpin RNA-mediated knockdown of HIF-1 alpha attenuated the induction of vascular endothelial growth factor mRNA expression and EC migration stimulated by NO(2)-FAs. Conclusion-Our data disclose a novel physiological role for NO(2)-FAs, indicating that these compounds induce angiogenesis in an NO-dependent mechanism via activation of HIF-1 alpha. (Arterioscler Thromb Vasc Biol. 2011;31:1360-1367.)
Resumo:
Autologous hematopoietic stem cell transplantation (HSCT) has proved efficient to treat hematological malignancies. However, some patients fail to mobilize HSCs. It is known that the microenvironment may undergo damage after allogeneic HSCT. However little is known about how chemotherapy and growth factors contribute to this damage. We studied the stromal layer formation(SLF) and velocity before and after HSC mobilization, through long-term bone marrow culture from 22 patients and 10 healthy donors. Patients` SLF was similar at pre- (12/22)and post-mobilization (9/20), however for controls this occurred more at pre- mobilization (9/10; p=0.03). SLF velocity was higher at pre than post-mobilization in both groups. Leukemias and multiple myeloma showed faster growth of SLF than lymphomas at post-mobilization, the latter being similar to controls. These findings could be explained by less uncommitted HSC in controls than patients at post-mobilization. Control HSCs may migrate more in response to mobilization, resulting in a reduced population by those cells.
Resumo:
Nitric oxide (NO) plays an important role in the control of the vascular tone and the most often employed NO donors have limitations due to their harmful side-effects. In this context, new NO donors have been prepared, in order to minimize such undesirable effects. cis-[Ru(bpy)(2)(py)NO(2)](PF(6)) (RuBPY) is a new nitrite complex synthesized in our laboratory that releases NO in the presence of the vascular tissue only. In this work the vasorelaxation induced by this NO donor has been studied and compared to that obtained with the well known NO donor SNP. The relaxation induced by RuBPY is concentration-dependent in denuded rat aortas pre-contracted with phenylephrine (EC(50)). This new compound induced relaxation with efficacy similar to that of SNP, although its potency is lower. The time elapsed until maximum relaxation is achieved (E(max) = 240 s) is similar to measured for SNP (210 s). Vascular reactivity experiments demonstrated that aortic relaxation by RuBPY is inhibited by the soluble guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiozolo[4,3-a]quinoxaline-1-one (ODQ 1 mu M). In a similar way, 1 mu M ODQ also reduces NO release from the complex as measured with DAF-2 DA by confocal microscopy. These findings suggest that this new complex RuBPY that has nitrite in its structure releases NO inside the vascular smooth muscle cell. This ruthenium complex releases significant amounts of NO only in the presence of the aortic tissue. Reduction of nitrite to NO is most probably dependent on the soluble guanylyl-cyclase enzyme, since NO release is inhibited by ODQ. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This work reports on the bimolecular sensitization of nitric oxide release from cis-[Ru(bpy)(2)(iso)-NO](PF(6))(3) (1) (iso = isoquinoline and bpy = 2,2`- bipyridine) by irradiating the MLCT transition of the chloro analog cis-[Ru(bpy) 2(iso) Cl] PF6 (2). The compounds displayed peaks in the ESI-MS spectra at m/z 749.1 and m/z 578.1 ascribed, respectively, to ([1(NO(o))-2PF(6)center dot CH(3)OH](2+)) and ([2-PF(6)](+)). In the cyclic voltammograms, the nitrosyl complex presented two redox waves related to the NO ligand at 0.48 and -0.37 V (versus Ag/AgCl, NO(+/0/-1) processes), while the sensitizer showed two reversible waves at 0.79 and -1.46 V (versus Ag/AgCl, Ru(2+/3+) and bpy(0/-1), respectively). The most important feature of this system is that the nitrosyl compound does not have significant absorption in the visible region, while the sensitizer has an intense band centered at 496 nm. The irradiation of an equimolar mixture of the two compounds in an ethanol: water solution (v: v) with light of lambda > 500 nm leads to NO release, as probed by amperometric measurements. The variational method was applied, showing that the two compounds self-assembly in solution with a 1: 1 stoichiometry. Fluorescence spectra acquired at 77 K provided the E(0-0) for the system and, from the thermodynamic cycle it was estimated that the photoinduced electron transfer between the species has a Delta G value of -1.59 eV. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Nitric oxide (NO) has been demonstrated to be the primary agent in relaxing airways in humans and animals. We investigated the mechanisms involved in the relaxation induced by NO-donors, ruthenium complex [Ru(terpy)(bdq)NO(+)](3+) (TERPY) and sodium nitroprusside (SNP) in isolated trachea of rats contracted with carbachol in an isolated organs chamber. For instance, we verified the contribution of K(+) channels, the importance of sGC/cGMP pathway, the influence of the extra and intracellular Ca(2+) sources and the contribution of the epithelium on the relaxing response. Additionally, we have used confocal microscopy in order to analyze the action of the NO-donors on cytosolic Ca(2+) concentration. The results demonstrated that both compounds led to the relaxation of trachea in a dependent-concentration way. However, the maximum effect (E(max)) of TERPY is higher than the SNP. The relaxation induced by SNP (but not TERPY) was significantly reduced by pretreatment with ODQ (sGC inhibitor). Only TERPY-induced relaxation was reduced by tetraethylammonium (K(+) channels blocker) and by pre-contraction with 75 mM KCl (membrane depolarization). The response to both NO-donors was not altered by the presence of thapsigargin (sarcoplasmic reticulum Ca(2+)-ATPase inhibitor). The epithelium removal has reduced the relaxation only to SNP, and it has no effect on TERPY. The both NO-donors reduced the contraction evoked by Ca(2+) influx, while TERPY have shown a higher inhibitory effect on contraction. Moreover, the TERPY was more effective than SNP in reducing the cytosolic Ca(2+) concentration measured by confocal microscopy. In conclusion, these results show that TERPY induces airway smooth muscle relaxation by cGMP-independent mechanisms, it involves the fluxes of Ca(2+) and K(+) across the membrane, it is more effective in reducing cytosolic Ca(2+) concentration and inducing relaxation in the rat trachea than the standard drug, SNP. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide (NO) is a gaseous molecule that has specific functions dictated by its localization and its kinetics of release. As NO-donors have a range of potential uses in the skin, much attention has been paid to the development of topical NO delivery systems. The aim of this work was to study the release rate and the skin penetration of the NO-donor cis[Ru(NO(2))(bpy)(2)(4-pic)](+) from different gel formulations and their potential as topical NO delivery systems under light stimuli. Among the formulations developed, the anionic gel retarded the nitro-ruthenium complex diffusion and also obstructed NO release after light irradiation. On the other hand, NO release before light irradiation was observed when the complex was dispersed in the cationic chitosan gel, possibly due to oxi-redox reactions between the amino groups of the polymer and the drug molecule. Finally, the non-ionic gel released the NO after light irradiation to the same extent as a drug aqueous solution at the same pH. The drug dispersed in this gel also penetrated into the stratum corneum skin layer, and the nitro-ruthenium complex present in the skin was able to release the NO after light stimuli, suggesting the potential use of this formulation as a topical NO delivery system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background and purpose: Benznidazole (Bz) is the therapy currently available for clinical treatment of Chagas` disease. However, many strains of Trypanosoma cruzi parasites are naturally resistant. Nitric oxide (NO) produced by activated macrophages is crucial to the intracellular killing of parasites. Here, we investigate the in vitro and in vivo activities against T. cruzi, of the NO donor, trans-[RuCl([15]aneN(4))NO]2+. Experimental approach: Trans-[RuCl([15]aneN(4))NO]2+ was incubated with a partially drug-resistant T. cruzi Y strain and the anti-proliferative (epimastigote form) and trypanocidal activities (trypomastigote and amastigote) evaluated. Mice were treated during the acute phase of Chagas` disease. The anti-T. cruzi activity was evaluated by parasitaemia, survival rate, cardiac parasitism, myocarditis and the curative rate. Key results: Trans-[RuCl([15]aneN(4))NO]2+ was 10- and 100-fold more active than Bz against amastigotes and trypomastigotes respectively. Further, trans-[RuCl([15]aneN(4))NO]2+ (0.1 mM) induced 100% of trypanocidal activity (trypomastigotes forms) in vitro. Trans-[RuCl([15]aneN(4))NO]2+ induced permanent suppression of parasitaemia and 100% survival in a murine model of acute Chagas` disease. When the drugs were given alone, parasitological cures were confirmed in only 30 and 40% of the animals treated with the NO donor (3.33 mu mol center dot kg-1 center dot day-1) and Bz (385 mu mol center dot kg-1 center dot day-1), respectively, but when given together, 80% of the animals were parasitologically cured. The cured animals showed an absence of myocarditis and a normalisation of cytokine production in the sera. In addition, no in vitro toxicity was observed at the tested doses. Conclusions and implications: These findings indicate that trans-[RuCl([15]aneN(4))NO]2+ is a promising lead compound for the treatment of human Chagas` disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Silva et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00524.x.
Resumo:
A new and promising nitrosyl ruthenium complex, [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3), bdqi-COOH is 3,4-diiminebenzoic acid and terpy is 2,2`-terpyridine, has been synthesized as a NO donor agent. The procedure used for [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3) synthesis has, apparently, yielded the formation of two isomers in which the ligand bdqi-COOH appears to be coordinated in its reduced form (bdcat-COOH), which could have differences in their pharmacological properties. Therefore, it was intended to separate the two possible isomers by high-performance liquid chromatography (HPLC) and to characterize them by high resolution mass spectrometry (QTOF MS) and by magnetic nuclear resonance spectroscopy (NMR). The results obtained by MS showed that the ESI-MS mass spectra of both HPLC column fractions, e.g. peak 1 and peak 2, are essentially equal, showing that both isomers display nearly identical gas-phase behavior with clusters of isotopologue ions centered at m/z 573, m/z 543 and m/z 513. Regarding the NMR analysis, the results showed that the positional isomerism is located in the bdqi-COOH ligand. From the observed results it can be concluded that the synthesis procedure that has been used results in the formation of two [Ru(terpy)(bdqi-COOH)NO](PF(6))(3) isomers. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The ruthenium nitrosyl complex trans-[Ru(NO)(NH(3))(4)(py)](PF(6))(3) (pyNO), a nitric oxide (NO) donor, was studied in regard to the release of NO and its impact both on isolated mitochondria and HepG2 cells. In isolated mitochondria, NO release from pyNO was concomitant with NAD(P)H oxidation and, in the 25-100 mu M range, it resulted in dissipation of mitochondrial membrane potential, inhibition of state 3 respiration, ATP depletion and reactive oxygen species (ROS) generation. In the presence of Ca(2+), mitochondrial permeability transition (MPT), an unspecific membrane permeabilization involved in cell necrosis and some types of apoptosis, was elicited. As demonstrated by externalization of phosphatidylserine and activation of caspase-9 and caspase-3, pyNO (50-100 mu M) induced HepG2 cell death, mainly by apoptosis. The combined action of the NO itself, the peroxynitrite yielded by NO in the presence of reactive oxygen species (ROS) and the oxidative stress generated by the NAD(P)H oxidation is proposed to be involved in cell death by pyNO, both via respiratory chain inhibition and ROS levels increase, or even via MPT, if Ca(2+) is present. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Protease-activated receptor 1 (PAR-1) is a G-protein-coupled receptor that is overexpressed in solid tumors, being associated with several pro-tumoral responses including primary growth, invasion, metastasis and angiogenesis. Expression of PAR-1 in human leukemic cell lines is reported but the status of its expression in human leukemic patients is currently unknown. In this study we evaluated the expression pattern of PAR-1 in patients with the four main types of leukemia - chronic lymphocytic leukemia subtype B (B-CLL), acute lymphoblastic leukemia subtype B (B-ALL), acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Flow cytometry analyses show that lymphocytes from B-CLL patients express this receptor at similar levels to healthy individuals. On the other hand, it was observed a significant increase in PAR-1 expression in B-ALL lymphocytes as compared to B-CLL and healthy donors. Flow cytometric and real-time PCR demonstrated a significant increase in PAR-1 expression in granulocytes from CML patients in blast phase (CML-BP) but not in chronic phase (CML-CP) as compared to healthy donors. Finally, a significant increase in PAR-1 expression has been also observed in blasts from AML (subtypes M4 and M5) patients, as compared to monocytes or granulocytes from healthy donors. We conclude that PAR-1 might play an important biological role in aggressive leukemias and might offer additional strategies for the development of new therapies. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Matrix metalloproteinases (MMPs) are promising diagnostic tools, and blood sampling/handling alters MMP concentrations between plasma and serum and between serum with and without clot activators. To explain the higher MMP-9 expression in serum collected with clot accelerators relative to serum with no additives and to plasma, we analyzed the effects of increasing amounts of silica and silicates (components of clot activators) in,citrate plasma, serum, and huffy coats collected in both plastic and glass tubes from 50 healthy donors, and we analyzed the effects of silica and silicate on cultured leukemia cells. The levels of MMP-2 did not show significant changes between glass and plastic tubes, between serum and plasma, between serum with and without clot accelerators, or between silica and silicate treatments. No modification of MMP-9 expression was obtained by the addition of silica or silicate to previously separated plasma and serum. Increasing the amounts of nonsoluble silica and soluble silicate added to citrate and empty tubes prior to blood collection resulted in increasing levels of MMP-9 relative to citrate plasma and serum. Silica and silicate added to buffy coats and leukemia cells significantly induced MMP-9 release/secretion, demonstrating that both silica and silicate induce the release of pro- and complexed MMP-9 forms. We recommend limiting the misuse of serum and avoiding the interfering effects of clot activators. (c) 2007 Elsevier Inc. All rights reserved.