940 resultados para NLP (Natural Language Processing)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation applies statistical methods to the evaluation of automatic summarization using data from the Text Analysis Conferences in 2008-2011. Several aspects of the evaluation framework itself are studied, including the statistical testing used to determine significant differences, the assessors, and the design of the experiment. In addition, a family of evaluation metrics is developed to predict the score an automatically generated summary would receive from a human judge and its results are demonstrated at the Text Analysis Conference. Finally, variations on the evaluation framework are studied and their relative merits considered. An over-arching theme of this dissertation is the application of standard statistical methods to data that does not conform to the usual testing assumptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EU]Testu bat koherente egiten duten arrazoiak ulertzea oso baliagarria da testuaren beraren ulermenerako, koherentzia eta koherentzia-erlazioak testu bat edo gehiago koherente diren ondorioztatzen laguntzen baitigu. Lan honetan gai bera duten testu ezberdinen arteko koherentziazko 3 Cross Document Structure Theory edo CST (Radev, 2000) erlazio aztertu eta sailkatu dira. Hori egin ahal izateko, euskaraz idatziriko gai berari buruzko testuak segmentatzeko eta beraien arteko erlazioak etiketatzeko gidalerroak proposatzen dira. 10 testuz osaturiko corpusa etiketatu da; horietako 3 cluster bi etiketatzailek aztertu dute. Etiketatzaileen arteko adostasunaren berri ematen dugu. Koherentzia-erlazioak garatzea oso garrantzitsua da Hizkuntzaren Prozesamenduko hainbat sistementzat, hala nola, informazioa erauzteko sistementzat, itzulpen automatikoarentzat, galde-erantzun sistementzat eta laburpen automatikoarentzat. Etorkizunean CSTko erlazio guztiak corpus esanguratsuan aztertuko balira, testuen arteko koherentzia- erlazioak euskarazko testuen prozesaketa automatikoa bideratzeko lehenengo pausua litzateke hemen egindakoa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Processamento de Linguagem Natural e Indústrias da Língua, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Question Answering systems that resort to the Semantic Web as a knowledge base can go well beyond the usual matching words in documents and, preferably, find a precise answer, without requiring user help to interpret the documents returned. In this paper, the authors introduce a Dialogue Manager that, through the analysis of the question and the type of expected answer, provides accurate answers to the questions posed in Natural Language. The Dialogue Manager not only represents the semantics of the questions, but also represents the structure of the discourse, including the user intentions and the questions context, adding the ability to deal with multiple answers and providing justified answers. The authors’ system performance is evaluated by comparing with similar question answering systems. Although the test suite is slight dimension, the results obtained are very promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi due anni, per via della pandemia generata dal virus Covid19, la vita in ogni angolo del nostro pianeta è drasticamente cambiata. Ad oggi, nel mondo, sono oltre duecentoventi milioni le persone che hanno contratto questo virus e sono quasi cinque milioni le persone decedute. In alcuni periodi si è arrivati ad avere anche un milione di nuovi contagiati al giorno e mediamente, negli ultimi sei mesi, questo dato è stato di più di mezzo milione al giorno. Gli ospedali, soprattutto nei paesi meno sviluppati, hanno subito un grande stress e molte volte hanno avuto una carenza di risorse per fronteggiare questa grave pandemia. Per questo motivo ogni ricerca in questo campo diventa estremamente importante, soprattutto quelle che, con l'ausilio dell'intelligenza artificiale, riescono a dare supporto ai medici. Queste tecnologie una volta sviluppate e approvate possono essere diffuse a costi molto bassi e accessibili a tutti. In questo elaborato sono stati sperimentati e valutati due diversi approcci alla diagnosi del Covid-19 a partire dalle radiografie toraciche dei pazienti: il primo metodo si basa sul transfer learning di una rete convoluzionale inizialmente pensata per la classificazione di immagini. Il secondo approccio utilizza i Vision Transformer (ViT), un'architettura ampiamente diffusa nel campo del Natural Language Processing adattata ai task di Visione Artificiale. La prima soluzione ha ottenuto un’accuratezza di 0.85 mentre la seconda di 0.92, questi risultati, soprattutto il secondo, sono molto incoraggianti soprattutto vista la minima quantità di dati di training necessaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poiché la nostra conoscenza collettiva continua ad essere digitalizzata e memorizzata, diventa più difficile trovare e scoprire ciò che stiamo cercando. Abbiamo bisogno di nuovi strumenti computazionali per aiutare a organizzare, rintracciare e comprendere queste vaste quantità di informazioni. I modelli di linguaggio sono potenti strumenti che possono essere impiegati per estrarre conoscenza statisticamente significativa ed interpretabile tramite apprendimento non supervisionato, testuali o nel codice sorgente. L’obiettivo di questa tesi è impiegare una metodologia di descriptive text mining, denominata POIROT, per analizzare i rapporti medici del dataset Adverse Drug Reaction (ADE). Si vogliono stabilire delle correlazioni significative che permettano di comprendere le ragioni per cui un determinato rapporto medico fornisca o meno informazioni relative a effetti collaterali dovuti all’assunzione di determinati farmaci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most visionary goals of Artificial Intelligence is to create a system able to mimic and eventually surpass the intelligence observed in biological systems including, ambitiously, the one observed in humans. The main distinctive strength of humans is their ability to build a deep understanding of the world by learning continuously and drawing from their experiences. This ability, which is found in various degrees in all intelligent biological beings, allows them to adapt and properly react to changes by incrementally expanding and refining their knowledge. Arguably, achieving this ability is one of the main goals of Artificial Intelligence and a cornerstone towards the creation of intelligent artificial agents. Modern Deep Learning approaches allowed researchers and industries to achieve great advancements towards the resolution of many long-standing problems in areas like Computer Vision and Natural Language Processing. However, while this current age of renewed interest in AI allowed for the creation of extremely useful applications, a concerningly limited effort is being directed towards the design of systems able to learn continuously. The biggest problem that hinders an AI system from learning incrementally is the catastrophic forgetting phenomenon. This phenomenon, which was discovered in the 90s, naturally occurs in Deep Learning architectures where classic learning paradigms are applied when learning incrementally from a stream of experiences. This dissertation revolves around the Continual Learning field, a sub-field of Machine Learning research that has recently made a comeback following the renewed interest in Deep Learning approaches. This work will focus on a comprehensive view of continual learning by considering algorithmic, benchmarking, and applicative aspects of this field. This dissertation will also touch on community aspects such as the design and creation of research tools aimed at supporting Continual Learning research, and the theoretical and practical aspects concerning public competitions in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Neural Networks (DNNs) have revolutionized a wide range of applications beyond traditional machine learning and artificial intelligence fields, e.g., computer vision, healthcare, natural language processing and others. At the same time, edge devices have become central in our society, generating an unprecedented amount of data which could be used to train data-hungry models such as DNNs. However, the potentially sensitive or confidential nature of gathered data poses privacy concerns when storing and processing them in centralized locations. To this purpose, decentralized learning decouples model training from the need of directly accessing raw data, by alternating on-device training and periodic communications. The ability of distilling knowledge from decentralized data, however, comes at the cost of facing more challenging learning settings, such as coping with heterogeneous hardware and network connectivity, statistical diversity of data, and ensuring verifiable privacy guarantees. This Thesis proposes an extensive overview of decentralized learning literature, including a novel taxonomy and a detailed description of the most relevant system-level contributions in the related literature for privacy, communication efficiency, data and system heterogeneity, and poisoning defense. Next, this Thesis presents the design of an original solution to tackle communication efficiency and system heterogeneity, and empirically evaluates it on federated settings. For communication efficiency, an original method, specifically designed for Convolutional Neural Networks, is also described and evaluated against the state-of-the-art. Furthermore, this Thesis provides an in-depth review of recently proposed methods to tackle the performance degradation introduced by data heterogeneity, followed by empirical evaluations on challenging data distributions, highlighting strengths and possible weaknesses of the considered solutions. Finally, this Thesis presents a novel perspective on the usage of Knowledge Distillation as a mean for optimizing decentralized learning systems in settings characterized by data heterogeneity or system heterogeneity. Our vision on relevant future research directions close the manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of ancient, undeciphered scripts presents unique challenges, that depend both on the nature of the problem and on the peculiarities of each writing system. In this thesis, I present two computational approaches that are tailored to two different tasks and writing systems. The first of these methods is aimed at the decipherment of the Linear A afraction signs, in order to discover their numerical values. This is achieved with a combination of constraint programming, ad-hoc metrics and paleographic considerations. The second main contribution of this thesis regards the creation of an unsupervised deep learning model which uses drawings of signs from ancient writing system to learn to distinguish different graphemes in the vector space. This system, which is based on techniques used in the field of computer vision, is adapted to the study of ancient writing systems by incorporating information about sequences in the model, mirroring what is often done in natural language processing. In order to develop this model, the Cypriot Greek Syllabary is used as a target, since this is a deciphered writing system. Finally, this unsupervised model is adapted to the undeciphered Cypro-Minoan and it is used to answer open questions about this script. In particular, by reconstructing multiple allographs that are not agreed upon by paleographers, it supports the idea that Cypro-Minoan is a single script and not a collection of three script like it was proposed in the literature. These results on two different tasks shows that computational methods can be applied to undeciphered scripts, despite the relatively low amount of available data, paving the way for further advancement in paleography using these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il Deep Learning ha radicalmente trasformato il mondo del Machine Learning migliorando lo stato dell'arte in diversi campi che spaziano dalla computer vision al natural language processing. Non fermandosi a problemi di classificazione, negli ultimi anni, applicazioni di tipo generativo hanno portato alla creazione di immagini realistiche e documenti letterali. Il mondo della musica non è esente da una moltitudine di esperimenti nello stesso campo, con risultati ancora acerbi ma comunque potenzialmente interessanti. In questa tesi verrà discussa l'applicazione di un di modello appartenente alla famiglia del Deep Learning per la generazione di musica simbolica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi di laurea compie uno studio sull’ utilizzo di tecniche di web crawling, web scraping e Natural Language Processing per costruire automaticamente un dataset di documenti e una knowledge base di coppie verbo-oggetto utilizzabile per la classificazione di testi. Dopo una breve introduzione sulle tecniche utilizzate verrà presentato il metodo di generazione, prima in forma teorica e generalizzabile a qualunque classificazione basata su un insieme di argomenti, e poi in modo specifico attraverso un caso di studio: il software SDG Detector. In particolare quest ultimo riguarda l’applicazione pratica del metodo esposto per costruire una raccolta di informazioni utili alla classificazione di documenti in base alla presenza di uno o più Sustainable Development Goals. La parte relativa alla classificazione è curata dal co-autore di questa applicazione, la presente invece si concentra su un’analisi di correttezza e performance basata sull’espansione del dataset e della derivante base di conoscenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'avanzamento nel campo della long document summarization dipende interamente dalla disponibilità di dataset pubblici di alta qualità e con testi di lunghezza considerevole. Risulta pertanto problematico il fatto che tali dataset risultino spesso solo in lingua inglese, comportandone una limitazione notevole se ci si rivolge a linguaggi le cui risorse sono limitate. A tal scopo, si propone LAWSU-IT, un nuovo dataset giudiziario per long document summarization italiana. LAWSU-IT è il primo dataset italiano di summarization ad avere documenti di grandi dimensioni e a trattare il dominio giudiziario, ed è stato costruito attuando procedure di cleaning dei dati e selezione mirata delle istanze, con lo scopo di ottenere un dataset di long document summarization di alta qualità. Inoltre, sono proposte molteplici baseline sperimentali di natura estrattiva e astrattiva con modelli stato dell'arte e approcci di segmentazione del testo. Si spera che tale risultato possa portare a ulteriori ricerche e sviluppi nell'ambito della long document summarization italiana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sempre più negli ultimi anni si interagisce con i chatbot, software che simulano una conversazione con un essere umano utilizzando il linguaggio naturale. L’elaborato di tesi mira ad uno studio più approfondito della tematica, a partire da come tale tecnologia si è evoluta nel corso degli anni. Si procede analizzando le principali applicazioni dei bot, soffermandosi anche sui cambiamenti apportati dalla pandemia di Covid-19, ed evidenziando le principali ragioni che portano aziende e singoli al loro utilizzo. Inoltre, vengono descritti i diversi tipi di bot esistenti e viene analizzato il Natural Language Processing, ramo dell’Intelligenza Artificiale che mira alla comprensione del linguaggio naturale. Nei capitoli successivi viene descritto il progetto CartBot, un’applicazione di chat mobile per l’e-grocery, implementata come un chatbot che guida il cliente all’acquisto della spesa online. Vengono descritte le tecnologie utilizzate, con particolare riferimento al software di Google Dialogflow, che permette di sviluppare bot; inoltre viene analizzata come è stata effettuata la progettazione, sia lato front-end che back-end, allegando il flowchart, un diagramma di flusso realizzato per definire la sequenza di azioni e passaggi richiesti dal bot per effettuare l’acquisto. Infine, sono descritte le varie sottosezioni di CartBot, che riguardano la visualizzazione dei prodotti e il completamento dell’ordine, allegando screenshot dell’interfaccia finale ottenuta e inserendo il codice di alcune funzioni rilevanti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato viene trattata l’analisi del problema di soft labeling applicato alla multi-document summarization, in particolare vengono testate varie tecniche per estrarre frasi rilevanti dai documenti presi in dettaglio, al fine di fornire al modello di summarization quelle di maggior rilievo e più informative per il riassunto da generare. Questo problema nasce per far fronte ai limiti che presentano i modelli di summarization attualmente a disposizione, che possono processare un numero limitato di frasi; sorge quindi la necessità di filtrare le informazioni più rilevanti quando il lavoro si applica a documenti lunghi. Al fine di scandire la metrica di importanza, vengono presi come riferimento metodi sintattici, semantici e basati su rappresentazione a grafi AMR. Il dataset preso come riferimento è Multi-LexSum, che include tre granularità di summarization di testi legali. L’analisi in questione si compone quindi della fase di estrazione delle frasi dai documenti, della misurazione delle metriche stabilite e del passaggio al modello stato dell’arte PRIMERA per l’elaborazione del riassunto. Il testo ottenuto viene poi confrontato con il riassunto target già fornito, considerato come ottimale; lavorando in queste condizioni l’obiettivo è di definire soglie ottimali di upper-bound per l’accuratezza delle metriche, che potrebbero ampliare il lavoro ad analisi più dettagliate qualora queste superino lo stato dell’arte attuale.