986 resultados para NICKEL(II) PHOSPHATE
Resumo:
New metal-organic frameworks (MOFs) [Ni(C12N2H10)(H2O)][C6H3(COO)2(COOH)] (I), [Co2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (II), [Ni2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (III), [Ni(C13N2H14)(H2O)][C6H3(COO)2(COOH)] (IV), [Ni3(H2O)8][C6H3(COO)3] (V) and [Co(C4N2H4)(H2O)][C6H3(COO)3] (VI) {C6H3(COOH)3 = trimesic acid, C12N2H10 = 1,10-phenanthroline, C4N2H12 = piperazine dication, C13N2H14 = 1,3-bis(4-pyridyl)propane and C4N2H4 = pyrazine} have been synthesized by using an interface between two immiscible solvents, water and cyclohexanol. The compounds are constructed from the connectivity between the octahedral M2+ (M = Ni, Co) ions coordinated by oxygen atoms of carboxylate groups and water molecules and/or by nitrogen atoms of the ligand amines and the carboxylate units to form a variety of structures of different dimensionality. Strong hydrogen bonds of the type O-H···O are present in all the compounds, which give rise to supramolecularly organized higher-dimensional structures. In some cases ··· interactions are also observed. Magnetic studies indicate weak ferromagnetic interactions in I, IV and V and weak antiferromagnetic interactions in the other compounds (II, III and VI). All the compounds have been characterized by a variety of techniques.
Resumo:
The purification and some properties of the enzyme indoleacetaldoxime hydrolyase (EC 4.2.1.29) from the fungus Gibberella fujikuroi, which dehydrates indoleacetaldoxime (IAOX) to indoleacetonitrile (IAN), are described. The enzyme activity in the fungus is present only under certain culture conditions. It is a soluble enzyme, has an optimum pH at 7, shows an energy of activation of —15,670 cal/mole, and has a Michaelis constant of 1.7 × 10−4 Image at 30 °. It appears to be specific for IAOX, and 1 mole of IAN is produced per mole of IAOX utilized. The enzyme is inhibited by a number of aldoximes of which phenylacetaldoxime (PAOX) is the most potent inhibitor. Inhibition by PAOX is competitive (Ki = 2.2 × 10−8 Image ). The enzyme is inhibited by SH reagents such as p-hydroxymercuribenzoate and N-ethylmaleimide, and by a number of SH compounds such as cysteine, β-mercaptoethanol, and 2,3-dimercaptopropanol (BAL). However, glutathione activates the enzyme. Metal chelating agents such as 8-OH-quinoline and diethyl dithiocarbamate inhibit the enzyme; the inhibition is partly reversed by ferric citrate. Ascorbic acid, and particularly dehydroascorbic acid (DHA), are good activators of the enzyme. Several other biological oxidants had either no action or had a slight effect. Potassium cyanide activates the enzyme at low concentration but inhibits at higher concentrations. Reduction of the enzyme with NaBH4 reduces activity, and the effect is partly reversed by pyridoxal phosphate and also by DHA. The above properties indicate that both an SH function and an oxidized function are required for activity.
Resumo:
Free parasites of Plasmodium berghei were found to incorporate labeled inorganic phosphate into high-energy phosphates by substrate linked and oxidative hosphorylation. But the parasites also appear to utilize the reserve ATP of the host cells when they are within the host cells which may indicate the dependence of the parasite on the host cells for provision of energy. This investigation formed part of the thesis submitted in 1965 for the doctoral degree at the Indian Institute of Science, Bangalore 12, India, and was supported in part by the Council of Scientific and Industrial Research, India.
Resumo:
The results of the present investigation reveal that the presence of anions in the reacting medium greatly modify the reactions between soil and solution P. Associating anions reduce considerably the retention of phosphate in soils. Citrate, tartrate, and silicate are found to be superior to arsenate, oxalate, and fluoride in reducing phosphate retention in soil. The performance of associating anions depends on the pH and P concentration of the reacting medium. The nature and properties of soil also play a highly significant role on the effectiveness of associating anions.
Resumo:
The preparation of the enzyme hydrolysing FMN whose partial purification from green-gram extracts is described in the preceding paper, has been shown to possess phosphotransferase activity. The enzyme could transfer the phosphate group cleaved from FMN to acceptors like thiamine, pyridoxal, pyridoxamine and nucleosides resulting in the formation of their corresponding phosphate esters and nucleotides. The properties of the enzyme hydrolysing FMN and the phosphotransferase activity of the preparation are compared.
Resumo:
The unprecedented absence of direct metal–nucleotide interaction has been observed in the X-ray structure of the ternary metal nucleotide system [Cu(bzim)(H2O)5]2+[IMP]2–·3H2O [IMP = inosine 5-monophosphate(2–), bzim = benzimidazole). The complex crystallizes in the space group P21 with a= 7.013(2), b= 13.179(9), c= 14.565(9)Å, = 94.82(4)°, and Z= 2. The structure was solved by the heavy-atom method and refined by full-matrix least squares on the basis of 1 761 observed (I? 3i) reflections to final R and R values of 0.034 and 0.036 respectively. The CuII has a distorted octahedral co-ordination with a nitrogen of the bzim ligand [Cu–N 1.947(5)Å] and three oxygens of water molecules in the basal plane [mean Cu–O 2.017(3)Å] and two more water oxygens at axial positions [Cu–O 2.194(6) and 2.732(5)Å]. The nucleotide base stacks with the bzim ligand at an average distance of 3.5 Å and an angle of 22°. In the lattice, N(7) of the base is linked to a lattice water through a hydrogen bond, while all the phosphate oxygens are involved in hydrogen bonds with co-ordinated as well as lattice water molecules. The co-ordination behaviour of IMP to CuII is compared in structures containing different -aromatic amines in order to assess the influence of the ternary ligand in complex formation. The present results indicate that, apart from the commonly observed phosphate binding, other modes of co-ordination are possible, these being influenced mainly by the -accepting properties of the ternary ligand.
Resumo:
The nature of interaction of Au(III) with nucleic acids was studied by using methods such as uv and ir spectrophotometry, viscometry, pH titrations, and melting-temperature measurements. Au(III) is found to interact slowly with nucleic acids over a period of several hours. The uv spectra of native calf-thymus DNA 9pH 5.6 acetate buffer containing (0.01M NaCIO4) showed a shift in λ max to high wavelengths and an increase in optical density at 260 nm. There was a fourfold decrease in viscosity (expressed as ηsp/c). The reaction was faster at pH 4.0 and also with denatured DNA (pH 5.6) and whole yeast RNA (pH 5.6). The order of preference of Au(III) (as deduced from the time of completion of reaction) for the nucleic acids in RNA > denatured DNA > DNA. The reaction was found to be completely reversible with respect KCN. Infrared spectra of DNA-Au(III) complexes showed binding to both the phosphate and bases of DNA. The same conclusions were also arrived at by melting-temperature studies of Au(III)-DNA system. pH titrations showed liberation of two hydroxylions at r = 0.12 [r = moles of HAuCl4 added per mole of DNA-(P)] and one hydrogen ion at r = 0.5. The probable binding sites could be N(1)/N(7) of adenine, N(7) and/or C(6)O of guanine, N(3) of cytosine and N(3) of thymine. DNAs differing in their (G = C)-contents [Clostridium perfingens DNA(G = C, 29%), salmon sperm DNA (G + C, 42%) and Micrococcus lysodeikticus DNA(G + C, 29%), salmon sperm DNA (G = C, 72%)] behaved differently toward Au(III). The hyperchromicity observed for DNAs differing in (G + C)-content and cyanide reversal titrations indicate selectivity toward ( A + T)-rich DNA at lw values of r. Chemical analysis and job's continuous variation studies indicated the existence of possible complexes above and below r = 1. The results indicate that Au(III) ions probably bind to hte phosphate group in the initial stages of the reaction, particularly at low values of r, and participation of the base interaction also increases. Cross-linking of the two strands by Au(III) may take place, but a complete collapse of the doulbe helix is not envisaged. It is probable that tilting of the bases or rotaiton of the bases around the glucosidic bond, resulting in a significant distrotion of the double helix, might take place due to binding of Au(III) to DNA.
Resumo:
A Schiff base metal complex, [Cu(II)(PLP-DL-tyrosinato)(H2O)].4H2O (PLP = pyridoxal phosphate), with the molecular formula CuC17O13N2H27P has been prepared and characterized by magnetic, spectral, and X-ray structural studies. The compound crystallizes in the triclinic space group P1BAR with a = 8.616 (2) angstrom, b = 11.843 (3) angstrom, c = 12.177 (3) angstrom, alpha = 103.40 (2)degrees, beta = 112.32 (2)degrees, gamma = 76.50 (1)degrees, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares techniques to a final R value of 0.057 for 3132 independent reflections. The coordination geometry around Cu(II) is distorted square pyramidal with phenolic oxygen, imino nitrogen, and carboxylate oxygen from the Schiff base ligand and water oxygen as basal donor atoms. The axial site is occupied by a phosphate oxygen from a neighboring molecule, thus resulting in a one-dimensional polymer. The structure reveals pi-pi interaction of the aromatic side chain of the amino acid with the pyridoxal pi system. A comparative study is made of this complex with similar Schiff base complexes. The variable-temperature magnetic behavior of this compound shows a weak antiferromagnetic interaction.
Resumo:
The impedance of sealed nickel/cadmium cells is measured at low states-of-charge that correspond to a cell e.m.f. range of 0.0 to 1.3 V. The results show that the impedance exhibits a pronounced maximum between 0.3 and 0.45 V. It is concluded that the impedance maxima are due to physicochemical processes taking place at the nickel oxide electrode. The impedance of the nickel oxide electrode is dominated by three different phenomena: (i) a Ni(II)/Ni(III) reaction between 1.3 and 0.8 V; (ii) a double-layer impedance between 0.8 and 0.3 V; (iii) a hydrogen evolution reaction between 0.3 and 0.0 V.
Resumo:
Electrochemical precipitation of cobalt(II) hydroxide from nitrate solutions containing organic molecules, such as glucose, fructose, lactose, glycerol, and citric acid, yields a new modification of cobalt (II) hydroxide (a = 3.09 +/- 0.03 Angstrom, c = 23.34 +/- 0.36 Angstrom) that is isostructural with cu-nickel hydroxide; precipitation in the absence of organic additives gives the stable, brucite-like, beta-CO (OH)(2). (C) 1995 Academic Press, Inc.
Resumo:
Five new open-framework compounds of gallium have been synthesized by hydrothermal methods and their structures determined by single crystal X-ray diffraction studies. The compounds, C8N4H26]Ga6F4(PO4)(6)], I, C5N3H11]Ga3F2(PO4)(3)]center dot H2O, II, C6N3H19]Ga-4(C2O4)(PO4)(4)(H2PO4)]center dot 2H(2)O, III, Ga2F3(HPO4)(PO4)]center dot 2H(3)O, IV, and C3N2H5](2)Ga-4(H2O)(3)(HPO3)(7)], V, possess three-dimensional structures. All the compounds are formed by the connectivity between the Ga polyhedra and phosphite/phosphate units. The observation of SBU-6 (I and II) and spiro-5 (IV) secondary building units (SBUs) are noteworthy. The flexibility of the formation of gallium phosphate frameworks has been established by the isolation of two related structures (I and II) from the same SBU units but different organic amines. Some of the present structures have close resemblance to the gallium phosphate phases known earlier. The compounds have been characterized by CHN analysis, powder XRD, IR, and TGA. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Dimeric or gemini surfactants consist of two hydrophobic chains and two hydrophilic head groups covalently connected by a hydrophobic or hydrophilic spacer. This paper reports the small-angle neutron scattering (SANS) measurements from aqueous micellar solutions of two different recently developed types of dimeric surfactants: (i) bis-anionic C16H33PO4--(CH2)(m)-PO4-C16H33,2Na(+) dimeric surfactants composed of phosphate head groups and a hydrophobic polymethylene spacer, referred to as 16-m-16,2Na(+), for spacer lengths m = 2, 4, 6, and 10, (ii) bis-cationic C16H33N+(CH3)(2)-CH2-(CH2-O-CH2)(p)-CH2-N+ (CH3)(2)C16H33,2Br(-) dimeric surfactants composed of dimethylammonium head groups and a wettable polyethylene oxide spacer, referred to as 16-CH2-p-CH2-16,2Br(-), for spacer lengths p = 1 - 3. The micellar structures of these surfactants are compared with the earlier studied bis-cationic C16H33N+ (CH3)(2)-(CH2)(m)-N+ (CH3)(2)C16H33,2Br(-) dimeric surfactants composed of dimethylammonium head groups and a hydrophobic polymethylene spacer, referred to as 16-m-16,2Br(-). It is found that 16-m-16,2Na(+), similar to 16-m-16,2Br(-), form various micellar structures depending on the spacer length. Micelles an disklike for rn = 2, rodlike for m = 4, and prolate ellipsoidal fur m = 6 and 10. The micelles of 16-CH2-p-CH2-16,2Br(-) are prolate ellipsoidal for all the values of p = 1 - 3. It is also found that micelles of 16-m-16,2Na(+) and 16-CH2-p-CH2-16,2Br(-) are large in comparison to those of 16-in-16,2Br(-) for similar spacer lengths. This is connected with the fact that both in 16-m-16,2Na(+) and 16-CH2-p-CH2-16,2Br(-), the head group or the spacer is more hydrated as compared to that in the 16-m-16,2Br(-). An increase in the hydration of the spacer or the head group increases the screening of the Coulomb repulsion between the charged head groups. This effect has been found to be more pronounced in the dimeric surfactants having wettable spacers. [S1063-651X(99)00303-7].
Resumo:
The effect of strain path change during rolling has been investigated for copper and nickel using X-ray diffraction and electron back scatter diffraction as well as crystal plasticity simulations. Four different strain paths namely: (i) unidirectional rolling; (ii) reverse rolling; (iii) two-step cross rolling and (iv) multi-step cross rolling were employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross rolled samples showed weaker texture with a prominent Bs {1 1 0}< 1 1 2 > and P(B(ND)) {1 1 0}< 1 1 1 > component in contrast to the unidirectional and reverse rolled samples where strong S {1 2 3}< 6 3 4 > and Cu {1 1 2}< 1 1 1 > components were formed. This was more pronounced for copper samples compared to nickel. The cross rolled samples were characterized by lower anisotropy and Taylor factor as well as less variation in Lankford parameter. Viscoplastic self-consistent simulations indicated that slip activity on higher number of octahedral slip systems can explain the weaker texture as well as reduced anisotropy in the cross rolled samples. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an outward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly advection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (M) over dot is, the higher the density and temperature are in the disks. We deal with accretion disks with relatively low accretion rates: 0.001 M-circle dot s(-1) less than or similar to (M) over dot less than or similar to 0.01 M-circle dot s(-1) and hence these disks are predominantly advection dominated. We use He-rich and Si-rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like P-31, K-39, Sc-43, Cl-35 and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthesized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.
Resumo:
Effects of fluctuations in habitat temperature (18-30 degrees) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrate are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40 degrees C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR ( >= 3) and P/O ratio (1.4-2.7) at the temperature range of 15-25 degrees C were within the normal range reported for other animals (3-10 for RCR and 1.5-3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18 degrees C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40 degrees C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondria respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments. (C) 2014 Elsevier Ltd. All rights reserved.