924 resultados para NF-kappa B


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed the effect of antibodies (Abs) directed against major histocompatibility complex (MHC) class II Abs on the proliferation of Theileria parva-infected (Tpi) T cells. Anti-MHC class II Abs exert a direct effect on Tpi T cells causing an acute block in their proliferation. The inhibition does not involve apoptosis and is also entirely reversible. The rapid arrest of DNA synthesis caused by anti-MHC class II Abs is not due to interference with the state of activation of the T cells since the transcriptional activator NF-kappa B remains activated in arrested cells. In addition, interleukin 2 (IL-2), IL-2R, and c-myc gene expression are also unaffected. By analyzing the cell-cycle phase distribution of inhibited cells, it could be shown that cells in all phases of the cell cycle are inhibited. The signal transduction pathway that results in inhibition was shown to be independent of protein kinase C and extracellular Ca2+. Tyrosine kinase inhibitors, however, partly reduced the level of inhibition and, conversely, phosphatase inhibitors enhanced it. The possible relevance of this phenomenon in other systems is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand how the serum amyloid A (SAA) genes are regulated, the cis-acting elements and trans-acting factors involved in the regulation of mouse SAA3 and rat SAA1 genes expression during inflammation were analyzed.^ To identify DNA sequences involved in the liver-specific expression of the mouse SAA3 gene, the 5$\sp\prime$ flanking region of this gene was analyzed by transient transfection studies. Results suggest that C/EBP, a liver-enriched transcription factor, plays an important role for the enhanced expression of the mouse SAA3 gene in hepatocytes.^ Transfection studies of the regulation of the expression of rat SAA1 gene indicated that a 322 bp fragment ($-$304 to +18) of the gene contains sufficient information for cytokine-induced expression of the reporter gene in a liver cell-specific manner. Further functional analysis of the 5$\sp\prime$ flanking region of the rat SAA1 gene demonstrated that a 65 bp DNA fragment ($-$138/$-$73) can confer cytokine-inducibility onto a heterologous promoter both in liver and nonliver cells. DNase I footprint and gel retardation assays identified five putative cis-regulatory elements within the 5$\sp\prime$ flanking region of the gene: one inducible element, a NF$\kappa$B binding site and four constitutive elements. Two constitutive elements, footprint regions I and III, were identified as C/EBP binding sites with region III having over a 10-fold higher affinity for C/EBP binding than region I. Functional analysis of the cis-elements indicated that C/EBP(I) and C/EBP(III) confer liver cell-specific activation onto a heterologous promoter, while sequences corresponding to the NF$\kappa$B element and C/EBP(I) impart cytokine responsiveness onto the heterologous promoter. These results suggest that C/EBP(I) possesses two functions: liver-specific activation and cytokine responsiveness. The identification of two cytokine responsive elements (NF$\kappa$B and C/EBP(I)), and two liver-specific elements (C/EBP(I) and C/EBP(III)) implies that multiple cis-acting elements are involved in the regulation of the expression of the rat SAA1 gene. The tissue-specific and cytokine-induced expression of rat SAA1 gene is likely the result of the interactions of these cis-acting elements with their cognate trans-acting factors as well as the interplay between the different cis-acting elements and their binding factors. (Abstract shortened with permission of author.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of P-glycoproteins encoded by the mdr gene family is associated with the emergence of multidrug-resistance phenotype in animal cells. This gene family includes two members, MDR1 and MDR2, in humans, and three members, mdr1a, mdr1b, and mdr2, in rodents. Among them, the rat mdr1b is known to be highly activated during hepatocarcinogenesis, and its expression is sensitive to the treatment with growth factors, cytotoxic drugs, as well as other physical or chemical stresses. It is believed that the transcriptional regulation plays an important role in above events, however little has been known about mechanisms involved.^ To elucidate how mdr1b expression is regulated, we isolated the genomic sequence of the rat mdr1b and functionally dissected its 5$\prime$ promoter region. Our results demonstrated that: (1) the transcription start site of the rat mdr1b is identical to that of the murine mdr1b homologue; (2) a palindromic sequence from bp $-$189 to $-$180 bp is essential for the basal promoter function of the rat mdr1b, and binds to a specific protein that appears to be a novel transcription factor implicated in the regulation of the rat mdr1b expression; (3) a NF-$\kappa$B-binding site from bp $-$167 to $-$159 is also involved in the basal promoter function. The p65/p50 subunits of the NF-$\kappa$B and raf-1 kinase are implicated in the insulin-inducible promoter activity of the mdr1b, suggesting the important role of NF-$\kappa$B in the regulation of the mdr1b by growth factors; (4) a p53-binding site from bp $-$199 to $-$180 is not only essential for the basal promoter activity but also responsible for the induction of mdr1b by cytotoxic agents. In addition, we provided evidence showing that endogenous mdr1b expression can be modulated by wild-type p53. On the basis of these findings, a model of transcriptional regulation of the rat mdr1b was proposed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NF-kappa B/Rel transcription factors are central regulators of mammalian immunity and are also implicated in the induction of cecropins and other antibacterial peptides in insects. We identified the gene for Relish, a compound Drosophila protein that, like mammalian p105 and p100, contains both a Rel homology domain and an I kappa B-like domain. Relish is strongly induced in infected flies, and it can activate transcription from the Cecropin A1 promoter. A Relish transcript is also detected in early embryos, suggesting that it acts in both immunity and embryogenesis. The presence of a compound Rel protein in Drosophila indicates that similar proteins were likely present in primordial immune systems and may serve unique signaling functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the human immunodeficiency virus type 1 (HIV) protease in cultured cells leads to apoptosis, preceded by cleavage of bcl-2, a key negative regulator of cell death. In contrast, a high level of bcl-2 protects cells in vitro and in vivo from the viral protease and prevents cell death following HIV infection of human lymphocytes, while reducing the yields of viral structural proteins, infectivity, and tumor necrosis factor alpha. We present a model for HIV replication in which the viral protease depletes the infected cells of bcl-2, leading to oxidative stress-dependent activation of NF kappa B, a cellular factor required for HIV transcription, and ultimately to cell death. Purified bcl-2 is cleaved by HIV protease between phenylalanine 112 and alanine 113. The results suggest a new option for HIV gene therapy; bcl-2 muteins that have noncleavable alterations surrounding the HIV protease cleavage site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decreased nitric oxide (NO) activity, the formation of reactive oxygen species, and increased endothelial expression of the redox-sensitive vascular cell adhesion molecule 1 (VCAM-1) gene in the vessel wall are early and characteristic features of atherosclerosis. To explore whether these phenomena are functionally interrelated, we tested the hypothesis that redox-sensitive VCAM-1 gene expression is regulated by a NO-sensitive mechanism. In early passaged human umbilical vein endothelial cells and human dermal microvascular endothelial cells, the NO donor diethylamine-NO (DETA-NO, 100 microM) reduced VCAM-1 gene expression induced by the cytokine tumor necrosis factor alpha (TNF-alpha, 100 units/ml) at the cell surface level by 65% and intracellular adhesion molecule 1 (ICAM-1) gene expression by 35%. E-selectin gene expression was not affected. No effect on expression of cell adhesion molecules was observed with DETA alone. Moreover, DETA-NO suppressed TNF-alpha-induced mRNA accumulation of VCAM-1 and TNF-alpha-mediated transcriptional activation of the human VCAM-1 promoter. Conversely, treatment with NG-monomethyl-L-arginine (L-NMMA, 1 mM), an inhibitor of NO synthesis, augmented cytokine induction of VCAM-1 and ICAM-1 mRNA accumulation. By gel mobility shift analysis, DETA-NO inhibited TNF-alpha activation of DNA binding protein activity to the VCAM-1 NF-kappa B like binding sites. Peroxy-fatty acids such as 13-hydroperoxydodecanoeic acid (linoleyl hydroperoxide) may serve as an intracellular signal for NF-kappa B activation. Using thin layer chromatography, DETA-NO (100 microM) suppressed formation of this metabolite, suggesting that DETA-NO modifies the reactivity of oxygen intermediates in the vascular endothelium. Through this mechanism, NO may function as an immunomodulator of the vessel wall and thus mediate inflammatory events involved in the pathogenesis of atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins associate with and transduce signals from TNF receptor 2, CD40, and presumably other members of the TNF receptor superfamily. TRAF2 is required for CD40- and TNF-mediated activation of the transcription factor NF-kappa B. Here we describe the isolation and characterization of a novel TRAF-interacting protein, I-TRAF, that binds to the conserved TRAF-C domain of the three known TRAFs. Overexpression of I-TRAF inhibits TRAF2-mediated NF-kappa B activation signaled by CD40 and both TNF receptors. Thus, I-TRAF appears as a natural regulator of TRAF function that may act by maintaining TRAFs in a latent state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) mediates a wide variety of disease states including septic shock, acute and chronic inflammation, and cachexia. Recently, a multivalent guanylhydrazone (CNI-1493) developed as an inhibitor of macrophage activation was shown to suppress TNF production and protect against tissue inflammation and endotoxin lethality [Bianchi, M., Ulrich, P., Bloom, O., Meistrell, M., Zimmerman, G. A., Schmidtmayerova, H., Bukrinsky, M., Donnelley, T., Bucala, R., Sherry, B., Manogue, K. R., Tortolani, A. J., Cerami, A. & Tracey, K. J. (1995) Mol. Med. 1, 254-266, and Bianchi, M., Bloom, O., Raabe, T., Cohen, P. S., Chesney, J., Sherry, B., Schmidtmayerova, H., Zhang, X., Bukrinsky, M., Ulrich, P., Cerami, A. & Tracey, J. (1996) J. Exp. Med., in press]. We have now elucidated the mechanism by which CNI-1493 inhibits macrophage TNF synthesis and show here that it acts through suppression of TNF translation efficiency. CNI-1493 blocked neither the lipopolysaccharide (LPS)-induced increases in the expression of TNF mRNA nor the translocation of nuclear factor NF-kappa B to the nucleus in macrophages activated by 15 min of LPS stimulation, indicating that CNI-1493 does not interfere with early NF-kappa B-mediated transcriptional regulation of TNF. However, synthesis of the 26-kDa membrane form of TNF was effectively blocked by CNI-1493. Further evidence for the translational suppression of TNF is given by experiments using chloram-phenicol acetyltransferase (CAT) constructs containing elements of the TNF gene that are involved in TNF translational regulation. Both the 5' and 3' untranslated regions of the TNF gene were required to elicit maximal translational suppression by CNI-1493. Identification of the molecular target through which CNI-1493 inhibits TNF translation should provide insight into the regulation of macrophage activation and mechanisms of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-rel protooncogene encodes a subunit of the NF-kappa B-like family of transcription factors. Mice lacking Rel are defective in mitogenic activation of B and T lymphocytes and display impaired humoral immunity. In an attempt to identify changes in gene expression that accompany the T-cell stimulation defects associated with the loss of Rel, we have examined the expression of cell surface activation markers and cytokine production in mitogen-stimulated Rel-/- T cells. The expression of cell surface markers including the interleukin 2 receptor alpha (IL-2R alpha) chain (CD25), CD69 and L-selectin (CD62) is normal in mitogen-activated Rel-/- T cells, but cytokine production is impaired. In Rel-/- splenic T cell cultures stimulated with phorbol 12-myristate 13-acetate and ionomycin, the levels of IL-3, IL-5, granulocyte- macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma) were only 2- to 3-fold lower compared with normal T cells. In contrast, anti-CD3 and anti-CD28 stimulated Rel-/- T cells, which fail to proliferate, make little or no detectable cytokines. Exogenous IL-2, which restitutes the proliferative response of the anti-CD3- and anti-CD28-treated Rel-/- T cells, restores production of IL-5, TNF-alpha, and IFN-gamma, but not IL-3 and GM-CSF expression to approximately normal levels. In contrast to mitogen-activated Rel-/- T cells, lipopolysaccharide-stimulated Rel-/- macrophages produce higher than normal levels of GM-CSF. These findings establish that Rel can function as an activator or repressor of gene expression and is required by T lymphocytes for production of IL-3 and GM-CSF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cactus, a Drosophila homologue of I kappa B, binds to and inhibits Dorsal, a homologue of the p50 and p65 components of NF-kappa B. We describe experiments in yeast with various Dorsal and Cactus derivatives showing that Cactus blocks the DNA binding and nuclear localization functions of Dorsal. In contrast, Dorsal's transcriptional activating region is functional in the Dorsal-Cactus complex. We identify two Dorsal mutants, Dorsal C233R and Dorsal S234P, that escape Cactus inhibition in vivo, and we show that these mutants fail to interact with Cactus in vitro. From this and data of others, we identify the likely surface of Dorsal that binds Cactus. We also describe a modified PCR mutagenesis procedure, easier to use than conventional methods, that produces a library of high complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the detection of endogenous intracellular glutathionyl (GS.) radicals in the intact neuroblastoma cell line NCB-20 under oxidative stress. Spin-trapping and electron paramagnetic resonance (EPR) spectroscopic methods were used for monitoring the radicals. The cells incubated with the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were challenged with H2O2 generated by the enzymic reaction of glucose/glucose oxidase. These cells exhibit the EPR spectrum of the GS. radical adduct of DMPO (DMPO-.SG) without exogenous reduced glutathione (GSH). The identity of this radical adduct was confirmed by observing hyperfine coupling constants identical to previously reported values in in vitro studies, which utilized known enzymic reactions, such as horseradish peroxidase and Cu/Zn superoxide dismutase, with GSH and H2O2 as substrates. The formation of the GS. radicals required viable cells and continuous biosynthesis of GSH. No significant effect on the resonance amplitude by the addition of a membrane-impermeable paramagnetic broadening agent indicated that these radicals were located inside the intact cell. N-Acetyl-L-cysteine (NAC)-treated cells produced NAC-derived free radicals (NAC.) in place of GS. radicals. The time course studies showed that DMPO-.SG formation exhibited a large increase in its concentration after a lag period, whereas DMPO-NAC. formation from NAC-treated cells did not show this sudden increase. These results were discussed in terms of the limit of antioxidant enzyme defenses in cells and the potential role of the GS. radical burst in activation of the transcription nuclear factor NF-kappa B in response to oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geographically constrained distribution of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) in southeast Asian populations suggests that both viral and host genetics may influence disease risk. Although susceptibility loci have been mapped within the human genome, the role of viral genetics in the focal distribution of NPC remains an enigma. Here we report a molecular phylogenetic analysis of an NPC-associated viral oncogene, LMP1, in a large panel of EBV isolates from southeast Asia and from Papua New Guinea, Africa, and Australia, regions of the world where NPC is and is not endemic, respectively. This analysis revealed that LMP1 sequences show a distinct geographic structure, indicating that the southeast Asian isolates have evolved as a lineage distinct from those of Papua New Guinea, African, and Australian isolates. Furthermore, a likelihood ratio test revealed that the C termini of the LMP1 sequences of the southeast Asian lineage are under significant positive selection pressure, particularly at some sites within the C-terminal activator regions. We also present evidence that although the N terminus and transmembrane region of LMP1 have undergone recombination, the C-terminal region of the gene has evolved without any history of recombination. Based on these observations, we speculate that selection pressure may be driving the LMP1 sequences in virus isolates from southeast Asia towards a more malignant phenotype, thereby influencing the endemic distribution of NPC in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survivors of Hodgkin's lymphoma (HL) frequently have many years to experience the long-term toxicities of combined modality therapies. Also, a significant proportion of HL patients will relapse or have refractory disease, and less than half of these patients will respond to current salvage strategies. 30–50% of HL cases are Epstein–Barr virus associated (EBV-positive HL). The virus is localized to the malignant cells and is clonal. EBV-positive HL is more frequent in childhood, in older adults (>45 years) and in mixed cellularity cases. The survival of EBV-positive HL in the elderly and the immunosuppressed is particularly poor. Despite improvements in our understanding of EBV-positive HL, the true contribution of EBV to the pathogenesis of HL remains unknown. Increased knowledge of the virus’ role in the basic biology of HL may generate novel therapeutic strategies for EBV-positive HL and the presence of EBV-latent antigens in the malignant HL cells may represent a target for cellular immunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AP-2 transcription factor family is presumed to play an important role in the regulation of the keratinocyte squamous differentiation program; however, limited functional data are available to support this. In the present study, the activity and regulation of AP-2 were examined in differentiating human epidermal keratinocytes. We report that (1) AP-2 transcriptional activity decreases in differentiated keratinocytes but remains unchanged in differentiation-insensitive squamous cell carcinoma cell lines, (2) diminished AP-2 transcriptional activity is associated with a loss of specific DNA-bound AP-2 complexes, and (3) there is an increase in the ability of cytoplasmic extracts, derived from differentiated keratinocytes, to phosphorylate AP-2alpha and AP-2beta when cells differentiate. In contrast, extracts from differentiation-insensitive squamous cell carcinoma cells are unable to phosphorylate AP-2 proteins. Finally, the phosphorylation of recombinant AP-2alpha by cytosolic extracts from differentiated keratinocytes is associated with decreased AP-2 DNA-binding activity. Combined, these data indicate that AP-2 trans-activation and DNA-binding activity decrease as keratinocytes differentiate, and that this decreased activity is associated with an enhanced ability to phosphorylate AP-2alpha and beta.