885 resultados para NEUROMUSCULAR FATIGUE
Resumo:
The paper describes a method whereby the distribution of fatigue damage along riser tensioner ropes is calculated, taking account of heave motion, set tension, system geometry, tidal range and rope specification. From these data the distribution of damage along the rope is calculated for a given time period using a Miner’s summation method. This information can then be used to help the operator decide on the length of rope to ‘slip and cut’ whereby a length from the end of the rope is removed and the rope moved through the system from a storage drum such that sections of rope that have already suffered significant fatigue damage are not moved to positions where there is another peak in the distribution. There are two main advantages to be gained by using the fatigue damage model. The first is that it shows the amount of fatigue damage accumulating at different points along the rope, enabling the most highly damaged section to be removed well before failure. The second is that it makes for greater efficiency, as damage can be spread more evenly along the rope over time, avoiding the need to scrap long sections of undamaged rope.
Resumo:
We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, "Analysis of Creep Strain During Tensile Fatigue of Cortical Bone," J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.
Resumo:
During fatigue tests of cortical bone specimens, at the unload portion of the cycle (zero stress) non-zero strains occur and progressively accumulate as the test progresses. This non-zero strain is hypothesised to be mostly, if not entirely, describable as creep. This work examines the rate of accumulation of this strain and quantifies its stress dependency. A published relationship determined from creep tests of cortical bone (Journal of Biomechanics 21 (1988) 623) is combined with knowledge of the stress history during fatigue testing to derive an expression for the amount of creep strain in fatigue tests. Fatigue tests on 31 bone samples from four individuals showed strong correlations between creep strain rate and both stress and “normalised stress” (σ/E) during tensile fatigue testing (0–T). Combined results were good (r2=0.78) and differences between the various individuals, in particular, vanished when effects were examined against normalised stress values. Constants of the regression showed equivalence to constants derived in creep tests. The universality of the results, with respect to four different individuals of both sexes, shows great promise for use in computational models of fatigue in bone structures.
Resumo:
Gene compensation by members of the myogenic regulatory factor (MRF) family has been proposed to explain the apparent normal adult phenotype of MyoD(-/-) mice. Nerve and field stimulation were used to investigate contraction properties of muscle from MyoD(-/-) mice, and molecular approaches were used to investigate satellite-cell behavior. We demonstrate that MyoD deletion results in major alterations in the organization of the neuromuscular junction, which have a dramatic influence on the physiological contractile properties of skeletal muscle. Second, we show that the lineage progression of satellite cells (especially initial proliferation) in the absence of MyoD is abnormal and linked to perturbations in the nuclear localization of beta-catenin, a key readout of canonical Wnt signaling. These results show that MyoD has unique functions in both developing and adult skeletal muscle that are not carried out by other members of the MRF family.
Resumo:
Taste and smell detection threshold measurements are frequently time consuming especially when the method involves reversing the concentrations presented to replicate and improve accuracy of results. These multiple replications are likely to cause sensory and cognitive fatigue which may be more pronounced in elderly populations. A new rapid detection threshold methodology was developed that quickly located the likely position of each individuals sensory detection threshold then refined this by providing multiple concentrations around this point to determine their threshold. This study evaluates the reliability and validity of this method. Findings indicate that this new rapid detection threshold methodology was appropriate to identify differences in sensory detection thresholds between different populations and has positive benefits in providing a shorter assessment of detection thresholds. The results indicated that this method is appropriate at determining individual as well as group detection thresholds.
Electromyographic Evaluation of Neuromuscular Coordination of Subject After Orthodontic Intervention
Resumo:
The aim of this work was to investigate the neuromuscular changes associated with the orthodontic post-treatment using surface electromyography. One hundred (100) young, healthy adults without signs and symptoms of temporomandibular dysfunction (TMD) were divided into two groups: 60 subjects who were undergoing orthodontic intervention (Ortho Group) and 40 subjects who had no orthodontic intervention (Control Group), aged 18-25 years. EMG activity of masseter and temporalis anterior muscle was recorded during two different tests: 1. maximum voluntary clench (MVC) with cotton rolls; and 2. MVC in intercuspal position. In all subjects, both tests were performed with symmetric muscular patterns (more than 85%) and with insignificant latero-deviating of the mandible (lower than 10%). There are no statistically significant differences between the subjects of both groups evaluated. Both groups showed medium index values calculated according to the normal standards established previously.
Resumo:
Objectives - To describe the clinical and epidemiological aspects of post-polio syndrome (PPS) and identify predictors of its severity. Materials and methods - 132 patients with PPS were selected at the Neuromuscular Disease Outpatient Clinic of the Federal University of Sao Paulo. Descriptive analysis was carried out and predictors of PPS severe forms were investigated using an unconditional logistic regression. Results - The average age at onset was 39.4 years. The most common symptoms were fatigue (87.1%), muscle pain (82.4%) and joint pain (72.0%); 50.4% of the cases were severe. The following were associated with PPS severity: a < 4-year period of neurological recovery (OR 2.8), permanent damage in two limbs (OR 3.6) and residence at the time of acute polio in a city with more advanced medical assistance (OR 2.5). Conclusions - Health professionals should carefully evaluate polio survivors for PPS and be aware of the implications of muscle overuse in the neurological recovery period.
Resumo:
The aim of this study was to evaluate working conditions in the textile industry for different stages of Corporate Social Responsibility (CSR) development, and workers` perception of fatigue and workability. A cross-sectional study was undertaken with 126 workers in the production areas of five Brazilian textile plants. The corporate executive officers and managers of each company provided their personal evaluations of CSR. Companies were divided into 2 groups (higher and lower) of CSR scores. Workers completed questionnaires on fatigue, workability and working conditions. Ergonomic job analysis showed similar results for working conditions, independent of their CSR score. Multivariate analysis models were developed for fatigue and workability, indicating that they are both associated to factors related to working conditions and individual workers` characteristics and life styles. Work organization, (what, how, when, where and for how long the work is done), is also an associated factor for fatigue. This study suggests that workers` opinions should be taken into greater consideration when companies develop their CSR programs, in particular for those relating to working conditions. Relevance to industry: This paper underlines the importance of considering working conditions and workers` opinions of them, work organization and individual workers` characteristics and life styles in order to restore or to maintain workability and to reduce fatigue, independently of how developed a company may be in the field of Corporate Social Responsibility. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the results of an experimental study of resistance-curve behavior and fatigue crack growth in cementitious matrices reinforced with eco-friendly natural fibers obtained from agricultural by-products. The composites include: blast furnace slag cement reinforced with pulped fibers of sisal, banana and bleached eucalyptus pulp, and ordinary Portland cement composites reinforced with bleached eucalyptus pulp. Fracture resistance (R-curve) and fatigue crack growth behavior were studied using single-edge notched bend specimens. The observed stable crack growth behavior was then related to crack/microstructure interactions that were elucidated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Fracture mechanics models were used to quantify the observed crack-tip shielding due to crack-bridging. The implications of the results are also discussed for the design of natural fiber-reinforced composite materials for affordable housing. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.
Resumo:
Aim: Changes in skeletal muscle morphology and metabolism are associated with limited functional capacity in heart failure, which can be attenuated by neuromuscular electrical stimulation (ES). The purpose of the present study was to analyse the effects of ES upon GLUT-4 protein content, fibre structure and vessel density of the skeletal muscle in a rat model of HF subsequent to myocardial infarction. Methods: Forty-four male Wistar rats were assigned to one of four groups: sham (S), sham submitted to ES (S+ES), heart failure (HF) and heart failure submitted to ES (HF+ES). The rats in the ES groups were submitted to ES of the left leg during 20 days (2.5 kHz, once a day, 30 min, duty cycle 50%- 15 s contraction/15 s rest). After this period, the left tibialis anterior muscle was collected from all the rats for analysis. Results: HF+ES rats showed lower values of lung congestion when compared with HF rats (P = 0.0001). Although muscle weight was lower in HF rats than in the S group, thus indicating hypotrophy, 20 days of ES led to their recovery (P < 0.0001). In both groups submitted to ES, there was an increase in muscle vessel density (P < 0.04). Additionally, heart failure determined a 49% reduction in GLUT-4 protein content (P < 0.03), which was recovered by ES (P < 0.01). Conclusion: In heart failure, ES improves morphological changes and raises GLUT-4 content in skeletal muscle.