986 resultados para NEGATIVE DIFFERENTIAL CONDUCTIVITY
Resumo:
In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type.
Resumo:
This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.
Resumo:
The pioneering work of Runge and Kutta a hundred years ago has ultimately led to suites of sophisticated numerical methods suitable for solving complex systems of deterministic ordinary differential equations. However, in many modelling situations, the appropriate representation is a stochastic differential equation and here numerical methods are much less sophisticated. In this paper a very general class of stochastic Runge-Kutta methods is presented and much more efficient classes of explicit methods than previous extant methods are constructed. In particular, a method of strong order 2 with a deterministic component based on the classical Runge-Kutta method is constructed and some numerical results are presented to demonstrate the efficacy of this approach.
Resumo:
Stochastic differential equations (SDEs) arise fi om physical systems where the parameters describing the system can only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically solving SDEs effectively.
Resumo:
Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge-Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this forces the stepsize to be very small. This paper presents a completely general variable stepsize implementation of an embedded Runge Kutta pair for solving SDEs numerically; in this implementation, there is no restriction on the value used for the stepsize, and it is demonstrated that the integration remains on the correct Brownian path.
Resumo:
Stochastic differential equations (SDEs) arise fi om physical systems where the parameters describing the system can only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically solving SDEs effectively. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In many modeling situations in which parameter values can only be estimated or are subject to noise, the appropriate mathematical representation is a stochastic ordinary differential equation (SODE). However, unlike the deterministic case in which there are suites of sophisticated numerical methods, numerical methods for SODEs are much less sophisticated. Until a recent paper by K. Burrage and P.M. Burrage (1996), the highest strong order of a stochastic Runge-Kutta method was one. But K. Burrage and P.M. Burrage (1996) showed that by including additional random variable terms representing approximations to the higher order Stratonovich (or Ito) integrals, higher order methods could be constructed. However, this analysis applied only to the one Wiener process case. In this paper, it will be shown that in the multiple Wiener process case all known stochastic Runge-Kutta methods can suffer a severe order reduction if there is non-commutativity between the functions associated with the Wiener processes. Importantly, however, it is also suggested how this order can be repaired if certain commutator operators are included in the Runge-Kutta formulation. (C) 1998 Elsevier Science B.V. and IMACS. All rights reserved.
Resumo:
In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if an s-stage SRK contains Stratonovich integrals up to order p then the strong order of the SRK cannot exceed min{(p + 1)/2, (s - 1)/2), p greater than or equal to 2, s greater than or equal to 3 or 1 if p = 1.
Resumo:
Purpose – The aim of this paper is to establish a linkage between negative global media news towards Grameen Bank (GB), the largest microfinance organisation in the developing world, and the extent and type of annual report social performance disclosures by GB, over the nine-year period 1997-2005. Design/methodology/approach – Content analysis instruments are utilised to analyse GB annual report social disclosure. Findings – The study finds that GB's community poverty alleviation disclosures account for the highest proportion of total social disclosures in the period 1997-2005. The results of this study are particularly significant in relation to poverty alleviation – the issue attracting severe criticism from the Wall Street Journal (WSJ?) late in 2001. The community poverty alleviation disclosures by GB are significantly greater over the four years following the negative news in the WSJ than in the four years before. The results suggest that GB responds to a negative media story or legitimacy threatening news via annual report social disclosures in an attempt to re-establish its legitimacy. Originality/value – This paper contributes to the literature because in the past there has been no research published linking global media attention to the social disclosure practices of major organisations in developing countries
Resumo:
This study tested the hypothesis that negative symptoms and quality of life for patients with functional psychoses are associated with family environment. Fifty-seven first-admission patients with functional psychoses were assessed at hospital admission for severity of psychopathology and premorbid adjustment. Relatives residing with patients rated the family environment at admission and one month after discharge on the Family Environment Scale. Patients made the same ratings after discharge. Six months later, patients were reassessed on severity of psychopathology, negative symptoms, and quality of life. Multiple regression analyses showed that higher levels of positive emotional expressiveness in the family predicted milder and fewer negative symptoms and better quality of life at follow-up. The prediction was statistically independent of the initial severity of psychopathology or premorbid adjustment
On the effective hydraulic conductivity and macrodispersivity for density-dependent groundwater flow
Resumo:
In this paper, semi-analytical expressions of the effective hydraulic conductivity ( KE) and macrodispersivity ( αE) for 3D steady-state density-dependent groundwater flow are derived using a stationary spectral method. Based on the derived expressions, we present the dependence of KE and αE on the density of fluid under different dispersivity and spatial correlation scale of hydraulic conductivity. The results show that the horizontal KE and αE are not affected by density-induced flow. However, due to gravitational instability of the fluid induced by density contrasts, both vertical KE and αE are found to be reduced slightly when the density factor ( γ ) is less than 0.01, whereas significant decreases occur when γ exceeds 0.01. Of note, the variation of KE and αE is more significant when local dispersivity is small and the correlation scale of hydraulic conductivity is large.
Resumo:
Young novice drivers - that is, drivers aged 16-25 years who are relatively inexperienced in driving on the road and have a novice (Learner, Provisional) driver's licence - have been overrepresented in car crash, injury and fatality statistics around the world for decades. There are numerous persistent characteristics evident in young novice driver crashes, fatalities and offences, including variables relating to the young driver themselves, broader social influences which include their passengers, the car they drive, and when and how they drive, and their risky driving behaviour in particular. Moreover, there are a range of psychosocial factors influencing the behaviour of young novice drivers, including the social influences of parents and peers, and person-related factors such as age-related factors, attitudes, and sensation seeking. Historically, a range of approaches have been developed to manage the risky driving behaviour of young novice drivers. Traditional measures predominantly relying upon education have had limited success in regulating the risky driving behaviour of the young novice driver. In contrast, interventions such as graduated driver licensing (GDL) which acknowledges young novice drivers' limitations - principally pertaining to their chronological and developmental age, and their driving inexperience - have shown to be effective in ameliorating this pervasive public health problem. In practice, GDL is a risk management tool that is designed to reduce driving at risky times (e.g., at night) or in risky driving conditions (e.g., with passengers), while still enabling novice drivers to obtain experience. In this regard, the GDL program in Queensland, Australia, was considerably enhanced in July 2007, and major additions to the program include mandated Learner practice of 100 hours recorded in a logbook, and passenger limits during night driving in the Provisional phase. Road safety researchers have also continued to consider the influential role played by the young driver's psychosocial characteristics, including psychological traits and states. In addition, whilst the majority of road safety user research is epidemiological in nature, contemporary road safety research is increasingly applying psychological and criminological theories. Importantly, such theories not only can guide young novice driver research, they can also inform the development and evaluation of countermeasures targeting their risky driving behaviour. The research is thus designed to explore the self-reported behaviours - and the personal, psychosocial, and structural influences upon the behaviours - of young novice drivers This thesis incorporates three stages of predominantly quantitative research to undertake a comprehensive investigation of the risky driving behaviour of young novices. Risky driving behaviour increases the likelihood of the young novice driver being involved in a crash which may harm themselves or other road users, and deliberate risky driving such as driving in excess of the posted speed limits is the focus of the program of research. The extant literature examining the nature of the risky behaviour of the young novice driver - and the contributing factors for this behaviour - while comprehensive, has not led to the development of a reliable instrument designed specifically to measure the risky behaviour of the young novice driver. Therefore the development and application of such a tool (the Behaviour of Young Novice Drivers Scale, or BYNDS) was foremost in the program of research. In addition to describing the driving behaviours of the young novice, a central theme of this program of research was identifying, describing, and quantifying personal, behavioural, and environmental influences upon young novice driver risky behaviour. Accordingly the 11 papers developed from the three stages of research which comprise this thesis are framed within Bandura's reciprocal determinism model which explicitly considers the reciprocal relationship between the environment, the person, and their behaviour. Stage One comprised the foundation research and operationalised quantitative and qualitative methodologies to finalise the instrument used in Stages Two and Three. The first part of Stage One involved an online survey which was completed by 761 young novice drivers who attended tertiary education institutions across Queensland. A reliable instrument for measuring the risky driving behaviour of young novices was developed (the BYNDS) and is currently being operationalised in young novice driver research in progress at the Centre for Injury Research and Prevention in Philadelphia, USA. In addition, regression analyses revealed that psychological distress influenced risky driving behaviour, and the differential influence of depression, anxiety, sensitivity to punishments and rewards, and sensation seeking propensity were explored. Path model analyses revealed that punishment sensitivity was mediated by anxiety and depression; and the influence of depression, anxiety, reward sensitivity and sensation seeking propensity were moderated by the gender of the driver. Specifically, for males, sensation seeking propensity, depression, and reward sensitivity were predictive of self-reported risky driving, whilst for females anxiety was also influential. In the second part of Stage One, 21 young novice drivers participated in individual and small group interviews. The normative influences of parents, peers, and the Police were explicated. Content analysis supported four themes of influence through punishments, rewards, and the behaviours and attitudes of parents and friends. The Police were also influential upon the risky driving behaviour of young novices. The findings of both parts of Stage One informed the research of Stage Two. Stage Two was a comprehensive investigation of the pre-Licence and Learner experiences, attitudes, and behaviours, of young novice drivers. In this stage, 1170 young novice drivers from across Queensland completed an online or paper survey exploring their experiences, behaviours and attitudes as a pre- and Learner driver. The majority of novices did not drive before they were licensed (pre-Licence driving) or as an unsupervised Learner, submitted accurate logbooks, intended to follow the road rules as a Provisional driver, and reported practicing predominantly at the end of the Learner period. The experience of Learners in the enhanced-GDL program were also examined and compared to those of Learner drivers who progressed through the former-GDL program (data collected previously by Bates, Watson, & King, 2009a). Importantly, current-GDL Learners reported significantly more driving practice and a longer Learner period, less difficulty obtaining practice, and less offence detection and crash involvement than Learners in the former-GDL program. The findings of Stage Two informed the research of Stage Three. Stage Three was a comprehensive exploration of the driving experiences, attitudes and behaviours of young novice drivers during their first six months of Provisional 1 licensure. In this stage, 390 of the 1170 young novice drivers from Stage Two completed another survey, and data collected during Stages Two and Three allowed a longitudinal investigation of self-reported risky driving behaviours, such as GDL-specific and general road rule compliance; risky behaviour such as pre-Licence driving, crash involvement and offence detection; and vehicle ownership, paying attention to Police presence, and punishment avoidance. Whilst the majority of Learner and Provisional drivers reported compliance with GDL-specific and general road rules, 33% of Learners and 50% of Provisional drivers reported speeding by 10-20 km/hr at least occasionally. Twelve percent of Learner drivers reported pre-Licence driving, and these drivers were significantly more risky as Learner and Provisional drivers. Ten percent of males and females reported being involved in a crash, and 10% of females and 18% of males had been detected for an offence, within the first six months of independent driving. Additionally, 75% of young novice drivers reported owning their own car within six months of gaining their Provisional driver's licence. Vehicle owners reported significantly shorter Learner periods and more risky driving exposure as a Provisional driver. Paying attention to Police presence on the roads appeared normative for young novice drivers: 91% of Learners and 72% of Provisional drivers reported paying attention. Provisional drivers also reported they actively avoided the Police: 25% of males and 13% of females; 23% of rural drivers and 15% of urban drivers. Stage Three also allowed the refinement of the risky behaviour measurement tool (BYNDS) created in Stage One; the original reliable 44-item instrument was refined to a similarly reliable 36-item instrument. A longitudinal exploration of the influence of anxiety, depression, sensation seeking propensity and reward sensitivity upon the risky behaviour of the Provisional driver was also undertaken using data collected in Stages Two and Three. Consistent with the research of Stage One, structural equation modeling revealed anxiety, reward sensitivity and sensation seeking propensity predicted self-reported risky driving behaviour. Again, gender was a moderator, with only reward sensitivity predicting risky driving for males. A measurement model of Akers' social learning theory (SLT) was developed containing six subscales operationalising the four constructs of differential association, imitation, personal attitudes, and differential reinforcement, and the influence of parents and peers was captured within the items in a number of these constructs. Analyses exploring the nature and extent of the psychosocial influences of personal characteristics (step 1), Akers' SLT (step 2), and elements of the prototype/willingness model (PWM) (step 3) upon self-reported speeding by the Provisional driver in a hierarchical multiple regression model found the following significant predictors: gender (male), car ownership (own car), reward sensitivity (greater sensitivity), depression (greater depression), personal attitudes (more risky attitudes), and speeding (more speeding) as a Learner. The research findings have considerable implications for road safety researchers, policy-makers, mental health professionals and medical practitioners alike. A broad range of issues need to be considered when developing, implementing and evaluating interventions for both the intentional and unintentional risky driving behaviours of interest. While a variety of interventions have been historically utilised, including education, enforcement, rehabilitation and incentives, caution is warranted. A multi-faceted approach to improving novice road safety is more likely to be effective, and new and existing countermeasures should capitalise on the potential of parents, peers and Police to be a positive influence upon the risky behaviour of young novice drivers. However, the efficacy of some interventions remains undetermined at this time. Notwithstanding this caveat, countermeasures such as augmenting and strengthening Queensland's GDL program and targeting parents and adolescents particularly warrant further attention. The findings of the research program suggest that Queensland's current-GDL can be strengthened by increasing compliance of young novice drivers with existing conditions and restrictions. The rates of speeding reported by the young Learner driver are particularly alarming for a number of reasons. The Learner is inexperienced in driving, and travelling in excess of speed limits places them at greater risk as they are also inexperienced in detecting and responding appropriately to driving hazards. In addition, the Learner period should provide the foundation for a safe lifetime driving career, enabling the development and reinforcement of non-risky driving habits. Learners who sped reported speeding by greater margins, and at greater frequencies, when they were able to drive independently. Other strategies could also be considered to enhance Queensland's GDL program, addressing both the pre-Licence adolescent and their parents. Options that warrant further investigation to determine their likely effectiveness include screening and treatment of novice drivers by mental health professionals and/or medical practitioners; and general social skills training. Considering the self-reported pre-licence driving of the young novice driver, targeted education of parents may need to occur before their child obtains a Learner licence. It is noteworthy that those participants who reported risky driving during the Learner phase also were more likely to report risky driving behaviour during the Provisional phase; therefore it appears vital that the development of safe driving habits is encouraged from the beginning of the novice period. General education of parents and young novice drivers should inform them of the considerably-increased likelihood of risky driving behaviour, crashes and offences associated with having unlimited access to a vehicle in the early stages of intermediate licensure. Importantly, parents frequently purchase the car that is used by the Provisional driver, who typically lives at home with their parents, and therefore parents are ideally positioned to monitor the journeys of their young novice driver during this early stage of independent driving. Parents are pivotal in the development of their driving child: they are models who are imitated and are sources of attitudes, expectancies, rewards and punishments; and they provide the most driving instruction for the Learner. High rates of self-reported speeding by Learners suggests that GDL programs specifically consider the nature of supervision during the Learner period, encouraging supervisors to be vigilant to compliance with general and GDL-specific road rules, and especially driving in excess of speed limit. Attitudes towards driving are formed before the adolescent reaches the age when they can be legally licensed. Young novice drivers with risky personal attitudes towards driving reported more risky driving behaviour, suggesting that countermeasures should target such attitudes and that such interventions might be implemented before the adolescent is licensed. The risky behaviours and attitudes of friends were also found to be influential, and given that young novice drivers tend to carry their friends as their passengers, a group intervention such as provided in a school class context may prove more effective. Social skills interventions that encourage the novice to resist the negative influences of their friends and their peer passengers, and to not imitate the risky driving behaviour of their friends, may also be effective. The punishments and rewards anticipated from and administered by friends were also found to influence the self-reported risky behaviour of the young novice driver; therefore young persons could be encouraged to sanction the risky, and to reward the non-risky, driving of their novice friends. Adolescent health programs and related initiatives need to more specifically consider the risks associated with driving. Young novice drivers are also adolescents, a developmental period associated with depression and anxiety. Depression, anxiety, and sensation seeking propensity were found to be predictive of risky driving; therefore interventions targeting psychological distress, whilst discouraging the expression of sensation seeking propensity whilst driving, warrant development and trialing. In addition, given that reward sensitivity was also predictive, a scheme which rewards novice drivers for safe driving behaviour - rather than rewarding the novice through emotional and instrumental rewards for risky driving behaviour - requires further investigation. The Police were also influential in the risky driving behaviour of young novices. Young novice drivers who had been detected for an offence, and then avoided punishment, reacted differentially, with some drivers appearing to become less risky after the encounter, whilst for others their risky behaviour appeared to be reinforced and therefore was more likely to be performed again. Such drivers saw t
Resumo:
The article examines the legislative reforms incorporating the Sex Discrimination Act and the Affirmative Action Act introduced during the 1980s. We utilise the Australian Bureau of Statistics Income Distribution Surveys 1981–82 and 1989–90 to reflect pre- and post-legislative reform. The article adopts the Brown, Moon and Zoloth (1980) methodology which treats both the wage and occupational status of the individual as endogenously determined. In the current context this is a particularly flexible framework allowing one to capture both the direct and indirect effects of the legislative reforms. The indirect effect refers to the narrowing of the gender wage gap associated with legislative manipulation of the male-female occupational distributions. The results contrast the slow convergence in the gender wage gap during the 1980s with the much faster pace of the 1970s. The article concludes that despite the focus of the 1980s legislation on employment equity, changes in the male-female occupational distribution over the period are small and the associated impact on gender wage convergence is also small.
Resumo:
Abstract: Texture enhancement is an important component of image processing, with extensive application in science and engineering. The quality of medical images, quantified using the texture of the images, plays a significant role in the routine diagnosis performed by medical practitioners. Previously, image texture enhancement was performed using classical integral order differential mask operators. Recently, first order fractional differential operators were implemented to enhance images. Experiments conclude that the use of the fractional differential not only maintains the low frequency contour features in the smooth areas of the image, but also nonlinearly enhances edges and textures corresponding to high-frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we applied the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other fractional differential operators, our new algorithms provide higher signal to noise values, which leads to superior image quality.