992 resultados para ND ALLOY
Resumo:
This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 degrees C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 degrees C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected alpha -> gamma transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 degrees C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics.
Resumo:
Electrical conductivity measurements show that Ln1-x Sr x CoO3, (Ln = Pr or Nd) undergoes a non-metal-metal transition when x≈0 3. The d.c. conductivity of compositions with 0
Resumo:
Creep properties of QE22 magnesium based alloy and composites reinforced with 20 volume percent of short-fibers - Maftech (R), Saffil (R) or Supertech (R), were evaluated using the impression creep test. In the impression creep test, a load is applied with the help of a cylindrical tungsten carbide indenter of 1 mm diameter. This has advantages over conventional creep testing in terms of small specimen size requirement and simple machining. Depth of impression is recorded with time and steady state strain rate is obtained from the slope of the secondary strain (depth of impression divided by indenter diameter) vs. time plot. The results are compared with the creep obtained from conventional creep performed in tension on the same materials earlier. Microstructural examination of the plastically deformed regions is carried out to explain creep behaviour of these composites.
Resumo:
Zinc-aluminium cast alloys (ZA alloys) exhibit good castability and mechanical properties but these alloys lack creep resistance and high temperature stability. One solution to improve these properties is to reinforce with ceramic particles or fibres, to result in MMCs. MMCs can be produced using casting technique involving infiltration. A systematic investigation was taken and this paper discusses the salient findings of the study on the ZA-27 alloy based MMCs produced through squeeze casting. (Reinforcing fibers: SAFFIL (chopped alumina) or mullite.)
Resumo:
Design of the required tool is a key and important parameter in the technique of friction stir welding (FSW). This is so because tool design does exert a close control over the quality of the weld. In an attempt to optimize tool design and its selection, it is essential and desirable to understand the mechanisms governing the formation of the weld. In this research study, few experiments were conducted to systematically analyze the intrinsic mechanisms governing the formation of the weld and to effectively utilize the analysis to establish a logical basis for design of the tool. For this purpose, the experiments were conducted using different geometries of the shoulder and pin of the rotating tool in such a way that only tool geometry had an intrinsic influence on formation of the weld. The results revealed that for a particular diameter of the pin there is an optimum diameter of the shoulder. Below this optimum shoulder diameter, the weld does not form while above the optimum diameter the overall symmetry of the weld is lost. Based on experimental results, a mechanism for the formation of friction stir weld is proposed. A synergism of the experimental results with the proposed mechanism is helpful in establishing the set of welding parameters for a given material.
Resumo:
This investigation deals with the evolution of grain boundary microstructure and crystallographic texture during hot rolling of a Ni-rich NiTi alloy. Electron backscattered diffraction studies revealed the occurrence of several coincidence site lattice (CSL) boundaries. The origin of these boundaries has been identified. The crystallographic texture of the deformed sample consists mainly of (1 1 1)parallel to normal direction fiber. The texture components on the fiber exhibit some correlation with the type of CSL boundary. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Addition of boron to cast Ti-6Al-4V alloy leads to significant refinement in grain size, which in turn improves processibilty as well as the mechanical properties of the as-cast alloy. Room temperature tensile and fatigue properties of Wrought Ti-6Al-4V-B alloys with B up to 0.09 wt.% are investigated. Thermo-mechanical processing at 950 degrees C caused kinking of alpha lamellae and alignment of TiB particles in the flow direction with a negligible change in prior beta grain and colony sizes, indicating the absence of dynamic recrystallisation during forging. Characterisation with the aid of X-ray and electron back scattered diffraction reveal a strong basal texture in B free alloy which gets randomised with the 0.09B addition in the forged condition. Marginal enhancement in tensile and fatigue properties upon forging is noted. B free wrought Ti-6Al-4V alloy exhibits better tensile strength as compared to B containing alloy, due to the operation of < c+a > slip on pyramidal planes with high value of CRSS as compared to < a > slip on basal and prismatic planes. Decrease in fatigue strength of Ti-6Al-4V-0.04B in as-cast and the wrought state is observed due to increase in the volume fraction of grain boundary a phase with B addition, which acts as a crack nucleation site. No significant effect of TiB particles on tensile and fatigue properties is observed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Boron addition to conventional titanium alloys below the eutectic limit refines the cast microstructure and improves mechanical properties. The present work explores the influence of hypoeutectic boron addition on the microstructure and texture evolution in Ti-6Al-4V alloy under beta extrusion. The beta extruded microstructure of Ti-6Al-4V is characterized by shear bands parallel to the extrusion direction. In contrast, the extruded Ti-6Al-4V-0.1B alloy shows a regular beta worked microstructure consisting of fine prior beta grains and acicular alpha-lamellae with no signs of the microstructural instability. Crystallographic texture after extrusion was almost identical for the two alloys indicating the similarity in their transformation behavior, which is attributed to complete dynamic recrystallization during beta processing. Microstructural features as well as crystallographic texture indicate dominant grain boundary related deformation processes for the boron modified alloy that leads to homogeneous deformation without instability formation. The absence of shear bands has significant technological importance as far as the secondary processing of boron added alloys in (alpha + beta)-phase field are concerned. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end. potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 degrees C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In steel refining process, an increase of interfacial area between the metal and slag through the metal droplets emulsified into the slag, so-called ``metal emulsion'', is one prevailing view for improving the reaction rate. The formation of metal emulsion was experimentally evaluated using Al-Cu alloy as metal phase and chloride salt as slag phase under the bottom bubbling condition. Samples were collected from the center of the salt phase in the container. Large number of metal droplets were separated from the salt by dissolving it into water. The number, surface area, and weight of the droplets increased with the gas flow rate and have local maximum values. The formation and sedimentation rates of metal droplets were estimated using a mathematical model. The formation rate increased with the gas flow rate and has a local maximum value as a function of gas flow rate, while the sedimentation rate is independent of the gas flow rate under the bottom bubbling condition. Three types of formation mode of metal emulsion, which occurred by the rupture of metal film around the bubble, were observed using high speed camera. During the process, an elongated column covered with metal film was observed with the increasing gas flow rate. This elongated column sometimes reached to the top surface of the salt phase. In this case, it is considered that fine droplets were not formed and in consequence, the weight of metal emulsion decreased at higher gas flow rate.
Resumo:
The paper reports the effect of the addition of small amount of Al on the microstructure and properties of HITPERM class rapidly solidified Fe44Co44Zr7B4Cu1 glassy alloy. Using three dimensional atom probe measurements we present evidence for the formation of Cu clusters on annealing in the metallic glass matrix of the Al containing alloy Fe43Co43Al2Zr7B4Cu1. Such clusters are otherwise absent in the parent alloy under similar conditions. The Cu clusters provides heterogeneous nucleation sites for the formation of bcc alpha'-FeCo phase leading to an increase in number density of this nanocrystalline phase and thereby enhancing the magnetic properties. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the influence of crystallographic texture on room temperature mechanical behavior of the sheets of the aluminum alloy AA7020 processed to different thicknesses. Three different thicknesses of the alloy sheet, namely 1, 1.85, and 3.6 mm, corresponding to different textures were investigated. Tensile tests were carried out at 0°, 45° and 90° with respect to sheet rolling direction and the resulting in-plane anisotropy in 0.2 proof stress, work hardening and plastic strain ratio (r-value) were determined. Texture derived r-values are also calculated and discussed vis-à -vis the experimentally obtained r-values. Finally the formability of the optimal alloy was studied using forming limit diagrams. Effect of natural aging, with a simulated heat treatment of 70 °C for 2 h on FLD was studied and compared with the as solutionized samples. It was observed that, the strain levels in the bi-axial region of the FLD were not much affected by the heat treatment. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Among all methods of metal alloy slurry preparation, the cooling slope method is the simplest in terms of design and process control. The method involves pouring of the melt from top, down an oblique and channel shaped plate cooled from bottom by counter flowing water. The melt, while flowing down, partially solidifies and forms columnar dendrites on plate wall. These dendrites are broken into equiaxed grains and are washed away with melt. The melt, together with the equiaxed grains, forms semisolid slurry collected at the slope exit and cast into billets having non-dendritic microstructure. The final microstructure depends on several process parameters such as slope angle, slope length, pouring superheat, and cooling rate. The present work involves scaling analysis of conservation equations of momentum, energy and species for the melt flow down a cooling slope. The main purpose of the scaling analysis is to obtain a physical insight into the role and relative importance of each parameter in influencing the final microstructure. For assessing the scaling analysis, the trends predicted by scaling are compared against corresponding numerical results using an enthalpy based solidification model with incorporation of solid phase movement.
Resumo:
Cooling slope (CS) has been used in this study to prepare semi-solid slurry of A356 Al alloy, keeping in view of slurry generation on demand for Rheo-pressure die casting process. Understanding the physics of microstructure evolution during cooling slope slurry formation is important to satisfy the need of semi-sold slurry with desired shape, size and morphology of primary Al phase. Mixture of spherical and rosette shaped primary Al phase has been observed in the samples collected during melt flow through the slope as well as in the cast (mould) samples compared to that of dendritic shape, observed in case of conventionally cast A356 alloy. The liquid melt has been poured into the slope at 650 A degrees C temperature and during flow it falls below the liquidus temperature of the said alloy, which facilitates crystallization of alpha-Al crystals on the cooling slope wall. Crystal separation due to melt flow is found responsible for nearly spherical morphology of the primary Al phase.