925 resultados para Muscle function
Resumo:
PURPOSE: The effects of β(2)-agonists on human skeletal muscle contractile properties, particularly on slow fibers, are unclear. Moreover, it remains to be ascertained whether central motor drive (CMD) during voluntary contractions could counter for eventual contractile alterations induced by β(2)-agonists. This study investigated central and peripheral neuromuscular adjustments induced by β(2)-agonist terbutaline on a predominantly slow human muscle, the soleus. METHODS: Ten recreationally active men ingested either a single dose of 8 mg of terbutaline or placebo in a randomized double-blind order (two experimental sessions). Isometric plantarflexion torque was measured during single and tetanic (10 and 100 Hz) stimulations as well as during submaximal and maximal voluntary contractions (MVC). Twitch peak torque and half-relaxation time were calculated. CMD was estimated via soleus electromyographic recordings obtained during voluntary contractions performed at approximately 50% MVC. RESULTS: MVC and twitch peak torque were not modified by terbutaline. Twitch half-relaxation time was 28% shorter after terbutaline administration compared with placebo (P < 0.001). Tetanic torques at 10 and 100 Hz were significantly lower after terbutaline intake compared with placebo (-40% and -24% respectively, P < 0.001). Despite comparable torque of submaximal voluntary contractions in the two conditions, CMD was 7% higher after terbutaline ingestion compared with placebo (P < 0.01). CONCLUSION: These results provide evidence that terbutaline modulates the contractility of the slow soleus muscle and suggest that the increased CMD during submaximal contractions may be viewed as a compensatory adjustment of the central nervous system to counter the weakening action induced by terbutaline on the contractile function of slow muscle fibers.
Resumo:
TGF-β and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.
Resumo:
Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. Here, we show that Smad3-null mice had incomplete recovery of muscle weight and myofiber size after muscle injury. Histological/immunohistochemical analysis suggested impaired inflammatory response and reduced number of activated myoblasts during the early stages of muscle regeneration in the tibialis anterior muscle of Smad3-null mice. Nascent myofibers formed after muscle injury were also reduced in number. Moreover, Smad3-null regenerated muscle had decreased oxidative enzyme activity and impaired mitochondrial biogenesis, evident by the downregulation of the gene encoding mitochondrial transcription factor A, a master regulator of mitochondrial biogenesis. Consistent with known Smad3 function, reduced fibrotic tissue formation was also seen in regenerated Smad3-null muscle. In conclusion, Smad3 deficiency leads to impaired muscle regeneration, which underscores an essential role of Smad3 in postnatal myogenesis. Given the negative role of myostatin during muscle regeneration, the increased expression of myostatin observed in Smad3-null muscle may contribute to the regeneration defects.
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.
Resumo:
This study investigated the influence of two warm-up protocols on neural and contractile parameters of knee extensors. A series of neuromuscular tests including voluntary and electrically evoked contractions were performed before and after running- (R (WU); slow running, athletic drills, and sprints) and strength-based (S (WU); bilateral 90 degrees back squats, Olympic lifting movements and reactivity exercises) warm ups (duration ~40 min) in ten-trained subjects. The estimated overall mechanical work was comparable between protocols. Maximal voluntary contraction torque (+15.6%; P < 0.01 and +10.9%; P < 0.05) and muscle activation (+10.9 and +12.9%; P < 0.05) increased to the same extent after R (WU) and S (WU), respectively. Both protocols caused a significant shortening of time to contract (-12.8 and -11.8% after R (WU) and S (WU); P < 0.05), while the other twitch parameters did not change significantly. Running- and strength-based warm ups induce similar increase in knee extensors force-generating capacity by improving the muscle activation. Both protocols have similar effects on M-wave and isometric twitch characteristics.
Resumo:
We report the case of a congenital myasthenic syndrome due to a mutation in AGRN, the gene encoding agrin, an extracellular matrix molecule released by the nerve and critical for formation of the neuromuscular junction. Gene analysis identified a homozygous missense mutation, c.5125G>C, leading to the p.Gly1709Arg variant. The muscle-biopsy specimen showed a major disorganization of the neuromuscular junction, including changes in the nerve-terminal cytoskeleton and fragmentation of the synaptic gutters. Experiments performed in nonmuscle cells or in cultured C2C12 myotubes and using recombinant mini-agrin for the mutated and the wild-type forms showed that the mutated form did not impair the activation of MuSK or change the total number of induced acetylcholine receptor aggregates. A solid-phase assay using the dystrophin glycoprotein complex showed that the mutation did not affect the binding of agrin to alpha-dystroglycan. Injection of wild-type or mutated agrin into rat soleus muscle induced the formation of nonsynaptic acetylcholine receptor clusters, but the mutant protein specifically destabilized the endogenous neuromuscular junctions. Importantly, the changes observed in rat muscle injected with mutant agrin recapitulated the pre- and post-synaptic modifications observed in the patient. These results indicate that the mutation does not interfere with the ability of agrin to induce postsynaptic structures but that it dramatically perturbs the maintenance of the neuromuscular junction.
Resumo:
OBJECTIVE: To evaluate the results of Muller's muscle-conjunctival resection for correction of blepharoptosis and to discuss the advantages of this procedure. METHODS: 38 patients (39 eyelids) were submitted to Muller's muscle-conjunctival resection. Blepharoptosis varied from 1.0 mm to 3.0 mm (mean: 2.0 mm). The amount of eyelid elevation produced by phenylephrine guided the amount of tissue to be resected. RESULT: 33 eyelids (85%) treated with this procedure were cosmetically acceptable. CONCLUSIONS: Muller's muscle-conjunctival resection procedure is a relatively simple technique for blepharoptosis, with good levator function and positive 10% phenylephrine test. The advantages are: preservation of tarsus and predictable results.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
During the last 2 years, several novel genes that encode glucose transporter-like proteins have been identified and characterized. Because of their sequence similarity with GLUT1, these genes appear to belong to the family of solute carriers 2A (SLC2A, protein symbol GLUT). Sequence comparisons of all 13 family members allow the definition of characteristic sugar/polyol transporter signatures: (1) the presence of 12 membrane-spanning helices, (2) seven conserved glycine residues in the helices, (3) several basic and acidic residues at the intracellular surface of the proteins, (4) two conserved tryptophan residues, and (5) two conserved tyrosine residues. On the basis of sequence similarities and characteristic elements, the extended GLUT family can be divided into three subfamilies, namely class I (the previously known glucose transporters GLUT1-4), class II (the previously known fructose transporter GLUT5, the GLUT7, GLUT9 and GLUT11), and class III (GLUT6, 8, 10, 12, and the myo-inositol transporter HMIT1). Functional characteristics have been reported for some of the novel GLUTs. Like GLUT1-4, they exhibit a tissue/cell-specific expression (GLUT6, leukocytes, brain; GLUT8, testis, blastocysts, brain, muscle, adipocytes; GLUT9, liver, kidney; GLUT10, liver, pancreas; GLUT11, heart, skeletal muscle). GLUT6 and GLUT8 appear to be regulated by sub-cellular redistribution, because they are targeted to intra-cellular compartments by dileucine motifs in a dynamin dependent manner. Sugar transport has been reported for GLUT6, 8, and 11; HMIT1 has been shown to be a H+/myo-inositol co-transporter. Thus, the members of the extended GLUT family exhibit a surprisingly diverse substrate specificity, and the definition of sequence elements determining this substrate specificity will require a full functional characterization of all members.
Resumo:
Abstract: The aim of the study was to assess the effects of epidural analgesia on pelvic floor function. Eighty- two primiparous women (group 1, consisting of 41 given an epidural, and group 2 of 41 not given an epidural) were investigated during pregnancy and at 2 and 10 months after delivery by a questionnaire, clinical examination, and assessment of bladder neck behavior, urethral sphincter function and intravaginal/intra-anal pressures. The prevalence of stress urinary incontinence was similar in both groups at 2 months (24% vs. 17%, P = 0.6) and 10 months (22% vs. 7%, P = 0.1), as was the prevalence of decreased sexual vaginal response at 10 months (27% vs. 10%, P= 0.08). Bladder neck behavior, urethral sphincter function and intravaginal and intra-anal pressures showed no significant differences between the two groups. Ten months after spontaneous delivery, there were no significant differences in the prevalence of stress urinary incontinence and decreased sexual vaginal response, or in bladder neck behavior, urethral sphincter function and pelvic floor muscle strength between women who had or had not had epidural analgesia.
Resumo:
Purpose: To examine the possible role of H+-activated acid-sensing ion channels (ASICs) in pain perception we characterized their expression in bladder dome biopsies of Bladder Pain Syndrome (BPS) patients and controls, in cultured human urothelium and in urothelial TEU-2 cells.Materials and Methods: Cold cut biopsies from the bladder dome were obtained in 8 asymptomatic controls and 28 patients with symptoms of BPS. ASIC expression was analyzed by QPCR and immunofluorescence. The channel function was measured by electrophysiology.Results: ASIC1a, ASIC2a and ASIC3 mRNAs were detected in human bladder. Similar amounts of ASIC1a and -3 were detected in detrusor smooth muscle, whereas in urothelium ASIC3 levels were higher than -1a. ASIC2a mRNA levels were lower than either -1a or -3 in both layers. ASIC currents were measured in TEU-2 cells and in primary cultures of human urothelium, and ASIC expression was confirmed by QPCR. Differentiation of TEU-2 cells caused an up-regulation of ASIC2a and ASIC3, and a down-regulation of ASIC1a mRNAs. BPS patients showed an up-regulation of ASIC2a and -3 mRNA, whereas ASIC1a remained unchanged. In contrast, the mRNA levels of TRPV1 were down-regulated during BPS. All differences were statistically significant (p<0.05)Conclusions: Several different ASIC subunits are expressed in human bladder and TEU-2 cells, where their levels are regulated during urothelial differentiation. An up-regulation of ASIC2a and -3 in BPS suggests their involvement in increased pain and hyperalgesia. A down-regulation of TRPV1 mRNA levels might indicate a different regulatory mechanism, controlling its expression in human bladder.
Resumo:
Context: Sarcopenia is thought to be associated with mitochondrial (M) loss. It is unclear whether the decrease in M content is consequent to aging per se or to decreased physical activity. Objectives: To examine the influence of fitness on M content and function, and to assess whether exercise could improve M function in older adults. Design and subjects: Three distinct studies were conducted: 1) a cross-sectional observation comparing M content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults (A) and sedentary (S) subjects matched for age and gender; 3) a 4-month exercise intervention in S. Setting: University-based clinical research center Outcomes: M volume density (Mv) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins (ETC) by western blotting, mRNAs for transcription factors involved in M biogenesis by qRT-PCR and in-vivo oxidative capacity (ATPmax) by (31)P-MR spectroscopy. Peak oxygen uptake (VO2peak) was measured by GXT. Results: VO2peak was strongly correlated with Mv in eighty 60-80 yo adults. Comparison of A vs. S revealed differences in Mv, ATPmax and some ETC complexes. Finally, exercise intervention confirmed that S are able to recover Mv, ATPmax and specific transcription factors. Conclusions: These data suggest that 1) aging per se is not the primary culprit leading to M dysfunction, 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle M content and may prevent aging muscle comorbidities and 3) the improvement of M function is all about content.
Resumo:
OBJECTIVE: To determine the pattern of extraocular muscle (EOM) paresis in incomplete vasculopathic third nerve palsies (3NP) that have normal pupillary function. METHODS: A retrospective study in a private practice and academic neuro-ophthalmic practice. Patients diagnosed with vasculopathic 3NP within 4 weeks of symptom onset were identified. The chart of each patient was reviewed to determine pupillary function and the pattern and degree of EOM and levator palpebrae paresis at the time of presentation. RESULTS: Of 55 patients with vasculopathic 3NP, 42 (76%) had normal pupillary function. Of these 42, 23 (55%) demonstrated an incomplete EOM palsy, defined as partially reduced ductions affecting all third nerve-innervated EOMs and levator (diffuse pattern) or partially reduced ductions that involved only some third nerve-innervated EOMs and levator (focal pattern). Twenty (87%) of these 23 patients showed a diffuse pattern of paresis; only three (13%) showed a focal pattern of paresis, one that affected only the superior rectus and levator muscles (superior division weakness). CONCLUSIONS: Based on our series, most patients with EOM/levator involvement in pupil-sparing, incomplete 3NP of vasculopathic origin have a diffuse pattern of paresis. In contrast, our review of the literature suggests that pupil-sparing 3NP of aneurysmal origin usually have a focal pattern of paresis. We propose that distinguishing these two patterns of EOM paresis may be helpful in differentiating between vasculopathic and aneurysmal 3NP. Future studies will be needed to confirm the clinical utility of this hypothesis.
Resumo:
Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.
Resumo:
We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time = 122.43 hours +/-17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean +/- SD maximal voluntary contraction force declined significantly at Mid- (-13+/-17% and -10+/-16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (-24+/-13% and -26+/-19%, P<0.01) with alteration of the central activation ratio (-24+/-24% and -28+/-34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: -18+/-18% and PF: -20+/-15%, P<0.01) and peak twitch (KE: -33+/-12%, P<0.001 and PF: -19+/-14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719+/-3045 Ul.1), lactate dehydrogenase (1145+/-511 UI.L-1), C-Reactive Protein (13.1+/-7.5 mg.L-1) and myoglobin (449.3+/-338.2 microg.L-1) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.