928 resultados para Morris Canal and Banking Company.
Resumo:
We have used novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic/display modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence based displays with 100 μs switching times at low fields, i.e.2-5 V/μm, wide viewing angle and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color and 4) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers.
Resumo:
In this paper we demonstrate laser emission from emulsion-based polymer dispersed liquid crystals. Such lasers can be easily formed on single substrates with no alignment layers. Remarkably, it is shown that there can exist two radically different laser emission profiles, namely, photonic band-edge lasing and non-resonant random lasing. The emission is controlled by simple changes in the emulsification procedure. Low mixing speeds generate larger droplets that favor photonic band edge lasing with the requisite helical alignment produced by film shrinkage. Higher mixing speeds generate small droplets, which facilitate random lasing by a non-resonant scattering feedback process. Lasing thresholds and linewidth data are presented showing the potential of controllable linewidth lasing sources. Sequential and stacked layers demonstrate the possibility of achieving complex, simultaneous multi-wavelength and "white-light" laser output from a wide variety of substrates including glass, metallic, paper and flexible plastic. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
In this paper we demonstrate laser emission from emulsion-based polymer dispersed liquid crystals. Such lasers can be easily formed on single substrates with no alignment layers. Remarkably, it is shown that there can exist two radically different laser emission profiles, namely, photonic band-edge lasing and non-resonant random lasing. The emission is controlled by simple changes in the emulsification procedure. Low mixing speeds generate larger droplets that favor photonic band edge lasing with the requisite helical alignment produced by film shrinkage. Higher mixing speeds generate small droplets, which facilitate random lasing by a non-resonant scattering feedback process. Lasing thresholds and linewidth data are presented showing the potential of controllable linewidth lasing sources. Sequential and stacked layers demonstrate the possibility of achieving complex, simultaneous multi-wavelength and "white-light" laser output from a wide variety of substrates including glass, metallic, paper and flexible plastic. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
The self-organization of the helical structure of chiral nematic liquid crystals combined with their sensitivity to electric fields makes them particularly interesting for low-threshold, wavelength tunable laser devices. We have studied these organic lasers in detail, ranging from the influence specific macroscopic properties, such as birefringence and order parameter, have on the output characteristics, to practical systems in the form of two-dimensional arrays, double-pass geometries and paintable lasers. Furthermore, even though chiral nematics are responsive to electric fields there is no facile means by which the helix periodicity can be adjusted, thereby allowing laser wavelength tuning, without adversely affecting the optical quality of the resonator. Therefore, in addition to studying the liquid crystal lasers, we have focused on finding a novel method with which to alter the periodicity of a chiral nematic using electric fields without inducing defects and degrading the optical quality factor of the resonator. This paper presents an overview of our research, describing (i) the correlation between laser output and material properties,(ii) the importance of the gain medium,(iii) multicolor laser arrays, and (iv) high slope efficiency (>60%) silicon back-plane devices. Overall we conclude that these materials have great potential for use in versatile organic laser systems.
Resumo:
It is known that bimesogenic liquid crystals exhibit a marked "odd-even" effect in the flexoelastic ratio (the effective flexoelectric coefficient to the average elastic coefficient), with the ratio being higher for the "odd-spaced" bimesogens (those with an odd number of alkyl groups in the spacer chain) than their neighboring even-spaced counterparts. To determine the contribution of each property to the flexoelastic ratio, we present experimental results on the flexoelectric and elastic coefficients of two homologous nonsymmetric bimesogens which possess odd and even alkyl spacers. Our results show that, although there are differences in the flexoelectric coefficients, there are substantially larger differences in the effective elastic coefficient. Specifically, the odd bimesogen is found to have both a low splay elastic coefficient and a very low bend elastic coefficient which, when combined, results in a significantly lower effective elastic coefficient and consequently a higher flexoelastic ratio.
Resumo:
We report on novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence phase devices with 100 μs switching times at low fields, i.e.2-5 V/μm, and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect optically isotropic or black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color, 4) chiral nematic optical reflectors electric field tunable over a wide wavelength range and 5) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers. © 2011 Materials Research Society.