996 resultados para Molecular rates
Resumo:
Background: Identifying local similarity between two or more sequences, or identifying repeats occurring at least twice in a sequence, is an essential part in the analysis of biological sequences and of their phylogenetic relationship. Finding such fragments while allowing for a certain number of insertions, deletions, and substitutions, is however known to be a computationally expensive task, and consequently exact methods can usually not be applied in practice. Results: The filter TUIUIU that we introduce in this paper provides a possible solution to this problem. It can be used as a preprocessing step to any multiple alignment or repeats inference method, eliminating a possibly large fraction of the input that is guaranteed not to contain any approximate repeat. It consists in the verification of several strong necessary conditions that can be checked in a fast way. We implemented three versions of the filter. The first is simply a straightforward extension to the case of multiple sequences of an application of conditions already existing in the literature. The second uses a stronger condition which, as our results show, enable to filter sensibly more with negligible (if any) additional time. The third version uses an additional condition and pushes the sensibility of the filter even further with a non negligible additional time in many circumstances; our experiments show that it is particularly useful with large error rates. The latter version was applied as a preprocessing of a multiple alignment tool, obtaining an overall time (filter plus alignment) on average 63 and at best 530 times smaller than before (direct alignment), with in most cases a better quality alignment. Conclusion: To the best of our knowledge, TUIUIU is the first filter designed for multiple repeats and for dealing with error rates greater than 10% of the repeats length.
Resumo:
Background: Worldwide, a high proportion of HIV-infected individuals enter into HIV care late. Here, our objective was to estimate the impact that late entry into HIV care has had on AIDS mortality rates in Brazil. Methodology/Principal Findings: We analyzed data from information systems regarding HIV-infected adults who sought treatment at public health care facilities in Brazil from 2003 to 2006. We initially estimated the prevalence of late entry into HIV care, as well as the probability of death in the first 12 months, the percentage of the risk of death attributable to late entry, and the number of avoidable deaths. We subsequently adjusted the annual AIDS mortality rate by excluding such deaths. Of the 115,369 patients evaluated, 50,358 (43.6%) had entered HIV care late, and 18,002 died in the first 12 months, representing a 16.5% probability of death in the first 12 months (95% CI: 16.3-16.7). By comparing patients who entered HIV care late with those who gained timely access, we found that the risk ratio for death was 49.5 (95% CI: 45.1-54.2). The percentage of the risk of death attributable to late entry was 95.5%, translating to 17,189 potentially avoidable deaths. Averting those deaths would have lowered the 2003-2006 AIDS mortality rate by 39.5%. Including asymptomatic patients with CD4(+) T cell counts >200 and <= 350 cells/mm(3) in the group who entered HIV care late increased this proportion by 1.8%. Conclusions/Significance: In Brazil, antiretroviral drugs reduced AIDS mortality by 43%. Timely entry would reduce that rate by a similar proportion, as well as resulting in a 45.2% increase in the effectiveness of the program for HIV care. The World Health Organization recommendation that asymptomatic patients with CD4(+) T cell counts <= 350 cells/mm(3) be treated would not have a significant impact on this scenario.
Resumo:
The decomposition of peroxynitrite to nitrite and dioxygen at neutral pH follows complex kinetics, compared to its isomerization to nitrate at low pH. Decomposition may involve radicals or proceed by way of the classical peracid decomposition mechanism. Peroxynitrite (ONOOH/ONOO(-)) decomposition has been proposed to involve formation of peroxynitrate (O(2)NOOH/O(2)NOO(-)) at neutral pH (D. Gupta, B. Harish, R. Kissner and W. H. Koppenol, Dalton Trans., 2009, DOI: 10.1039/b905535e, see accompanying paper in this issue). Peroxynitrate is unstable and decomposes to nitrite and dioxygen. This study aimed to investigate whether O(2)NOO(-) formed upon ONOOH/ONOO(-) decomposition generates singlet molecular oxygen [O(2) ((1)Delta(g))]. As unequivocally revealed by the measurement of monomol light emission in the near infrared region at 1270 nm and by chemical trapping experiments, the decomposition of ONOO(-) or O(2)NOOH at neutral to alkaline pH generates O(2) ((1)Delta(g)) at a yield of ca. 1% and 2-10%, respectively. Characteristic light emission, corresponding to O(2) ((1)Delta(g)) monomolecular decay was observed for ONOO(-) and for O(2)NOOH prepared by reaction of H(2)O(2) with NO(2)BF(4) and of H(2)O(2) with NO(2)(-) in HClO(4). The generation of O(2) ((1)Delta(g)) from ONOO(-) increased in a concentration-dependent manner in the range of 0.1-2.5 mM and was dependent on pH, giving a sigmoid pro. le with an apparent pK(a) around pD 8.1 (pH 7.7). Taken together, our results clearly identify the generation of O(2) ((1)Delta(g)) from peroxynitrate [O(2)NOO(-) -> NO(2)(-) + O(2) ((1)Delta(g))] generated from peroxynitrite and also from the reactions of H(2)O(2) with either NO(2)BF(4) or NO(2)(-) in acidic media.
Resumo:
Singlet molecular oxygen O(2)((1)Delta(g)) is a potent oxidant that can react with different biomolecules, including DNA, lipids and proteins. Many polycyclic aromatic hydrocarbons have been studied as O(2)((1)Delta(g)) chemical traps. Nevertheless, a suitable modification in the polycyclic aromatic ring must be made to increase the yield of O(2)((1)Delta(g)) chemical trapping. With this goal, an anthracene derivative, diethyl-3,3 '-(9,10-anthracenediyl)bisacrylate (DADB), was obtained from the reaction of 9,10-dibromoanthracene and ethyl acrylate through the Heck coupling reaction. The coupling of ethyl acrylate with the anthracene ring produced a new lipophilic, esterified, fluorescent probe reactive toward O(2)((1)Delta(g)). This compound reacts with O(2)((1)Delta(g)) at a rate of k(r) = 1.69 x 10(6) M(-1) s(-1) forming a stable endoperoxide (DADBO(2)), which was characterized by UV-Vis, fluorescence, HPLC/MS and (1)H and (13)C NMR techniques. The photophysical, photochemical and thermostability features of DADB were also evaluated. Furthermore, this compound has the potential for great application in biological systems because it is easily synthetized in large amount and generates specific endoperoxide (DADBO(2)), which can be easily detected by HPLC tandem mass spectrometry (HPLC/MS/MS).
Resumo:
In order for solar energy to serve as a primary energy source, it must be paired with energy storage on a massive scale. At this scale, solar fuels and energy storage in chemical bonds is the only practical approach. Solar fuels are produced in massive amounts by photosynthesis with the reduction of CO(2) by water to give carbohydrates but efficiencies are low. In photosystem II (PSII), the oxygen-producing site for photosynthesis, light absorption and sensitization trigger a cascade of coupled electron-proton transfer events with time scales ranging from picoseconds to microseconds. Oxidative equivalents are built up at the oxygen evolving complex (OEC) for water oxidation by the Kok cycle. A systematic approach to artificial photo synthesis is available based on a ""modular approach"" in which the separate functions of a final device are studied separately, maximized for rates and stability, and used as modules in constructing integrated devices based on molecular assemblies, nanoscale arrays, self-assembled monolayers, etc. Considerable simplification is available by adopting a ""dyesensitized photoelectrosynthesis cell"" (DSPEC) approach inspired by dye-sensitized solar cells (DSSCs). Water oxidation catalysis is a key feature, and significant progress has been made in developing a single-site solution and surface catalysts based on polypyridyl complexes of Ru. In this series, ligand variations can be used to tune redox potentials and reactivity over a wide range. Water oxidation electrocatalysis has been extended to chromophore-catalyst assemblies for both water oxidation and DSPEC applications.
Resumo:
Structural and dynamical properties of liquid trimethylphosphine (TMP), (CH(3))(3)P, as a function of temperature is investigated by molecular dynamics (MD) simulations. The force field used in the MD simulations, which has been proposed from molecular mechanics and quantum chemistry calculations, is able to reproduce the experimental density of liquid TMP at room temperature. Equilibrium structure is investigated by the usual radial distribution function, g(r), and also in the reciprocal space by the static structure factor, S(k). On the basis of center of mass distances, liquid TMP behaves like a simple liquid of almost spherical particles, but orientational correlation due to dipole-dipole interactions is revealed at short-range distances. Single particle and collective dynamics are investigated by several time correlation functions. At high temperatures, diffusion and reorientation occur at the same time range as relaxation of the liquid structure. Decoupling of these dynamic properties starts below ca. 220 K, when rattling dynamics of a given TMP molecules due to the cage effect of neighbouring molecules becomes important. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624408]
Resumo:
Thermodynamics, equilibrium structure, and dynamics of glass-forming liquids Ca(NO(3))(2)center dot nH(2)O, n=4, 6, and 8, have been investigated by molecular dynamics (MD) simulations. A polarizable model was considered for H(2)O and NO(3)- on the basis of previous fluctuating charge models for pure water and the molten salt 2Ca(NO(3))(2)center dot 3KNO(3). Similar thermodynamic properties have been obtained with nonpolarizable and polarizable models. The glass transition temperature, T(g), estimated from MD simulations was dependent on polarization, in particular the dependence of T(g) with electrolyte concentration. Significant polarization effects on equilibrium structure were observed in cation-cation, cation-anion, and water-water structures. Polarization increases the diffusion coefficient of H(2)O, but does not change significantly the diffusion coefficients of ions. Viscosity decreases upon inclusion of polarization, but the conductivity calculated with the polarizable model is smaller than the nonpolarizable model because polarization enhances anion-cation interactions.
Resumo:
Molecular dynamics simulations of the glass-forming liquid 2Ca(NO(3))(2)center dot 3KNO(3) (CKN) were performed from high temperature liquid states down to low temperature glassy states at six different pressures from 10(-4) to 5.0 GPa. The temperature dependence of the structural relaxation time indicates that the fragility of liquid CKN changes with pressure. In line with recent proposal [Scopigno , Science 302, 849 (2003)], the change on liquid fragility is followed by a proportional change of the nonergodicity factor of the corresponding glass at low temperature. (c) 2008 American Institute of Physics.
Resumo:
Background: Mutations in TP53 are common events during carcinogenesis. In addition to gene mutations, several reports have focused on TP53 polymorphisms as risk factors for malignant disease. Many studies have highlighted that the status of the TP53 codon 72 polymorphism could influence cancer susceptibility. However, the results have been inconsistent and various methodological features can contribute to departures from Hardy-Weinberg equilibrium, a condition that may influence the disease risk estimates. The most widely accepted method of detecting genotyping error is to confirm genotypes by sequencing and/or via a separate method. Results: We developed two new genotyping methods for TP53 codon 72 polymorphism detection: Denaturing High Performance Liquid Chromatography (DHPLC) and Dot Blot hybridization. These methods were compared with Restriction Fragment Length Polymorphism (RFLP) using two different restriction enzymes. We observed high agreement among all methodologies assayed. Dot-blot hybridization and DHPLC results were more highly concordant with each other than when either of these methods was compared with RFLP. Conclusions: Although variations may occur, our results indicate that DHPLC and Dot Blot hybridization can be used as reliable screening methods for TP53 codon 72 polymorphism detection, especially in molecular epidemiologic studies, where high throughput methodologies are required.
Resumo:
The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 x 10(6) Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (D-h) of 27 +/- 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller D-h of 10 +/- 1 nm. The decrease in D-h suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DILS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25 degrees C and 38 degrees C. At 25 degrees C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38 degrees C is faster than that at 25 degrees C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25 degrees C. Autoxiclation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.
Resumo:
Morphological and molecular analyses have proven to be complementary tools of taxonomic information for the redescription of the ctenostome bryozoans Amathia brasiliensis Busk, 1886 and Amathia distans Busk, 1886. The two species, originally described from material collected by the `Challenger` expedition but synonymized by later authors, now have their status fixed by means of the selection of lectotypes, morphological observations and analyses of DNA sequences described here. The morphological characters allowing the identification of living and/or preserved specimens are (1) A. brasiliensis: whitish-pale pigment spots in the frontal surface of stolons and zooids, and a wide stolon with biserial zooid clusters growing in clockwise and anti-clockwise spirals along it, the spirality direction being maintained from maternal to daughter stolons; and (2) A. distans: bright yellow pigment spots in stolonal and zooidal surfaces including lophophores, and a slender stolon, thickly cuticularized, with biserial zooid clusters growing in clockwise and anti-clockwise spirals along it and the spirality direction not maintained from maternal to daughter stolons. Pairwise comparisons of DNA sequences of the mitochondrial genes cytochrome c oxidase subunit I and large ribosomal RNA subunit revealed deep genetic divergence between A. brasiliensis and A. distans. Finally, analyses of those sequences within a Bayesian phylogenetic context recovered their genealogical species status.
Resumo:
1. Little is known about the role of deep roots in the nutrition of forest trees and their ability to provide a safety-net service taking up nutrients leached from the topsoil. 2. To address this issue, we studied the potential uptake of N, K and Ca by Eucalyptus grandis trees (6 years of age - 25 m mean height), in Brazil, as a function of soil depth, texture and water content. We injected NO(3)(-)- (15)N, Rb(+) (analogue of K(+)) and Sr(2+) (analogue of Ca(2+)) tracers simultaneously in a solution through plastic tubes at 10, 50, 150 and 300 cm in depth in a sandy and a clayey Ferralsol soil. A complete randomized design was set up with three replicates of paired trees per injection depth and soil type. Recently expanded leaves were sampled at various times after tracer injection in the summer, and the experiment was repeated in the winter. Soil water contents were continuously monitored at the different depths in the two soils. 3. Determination of foliar Rb and Sr concentrations and (15)N atom % made it possible to estimate the relative uptake potential (RUP) of tracer injections from the four soil depths and the specific RUP (SRUP), defined as RUP, per unit of fine root length density in the corresponding soil layer. 4. The highest tracer uptake rates were found in the topsoil, but contrasting RUP distributions were observed for the three tracers. Whilst the RUP was higher for NO(3)(-)- (15)N than for Rb(+) and Sr(2+) in the upper 50 cm of soil, the highest SRUP values for Sr(2+) and Rb(+) were found at a depth of 300 cm in the sandy soil, as well as in the clayey soil when gravitational solutions reached that depth. 5. Our results suggest that the fine roots of E. grandis trees exhibit contrasting potential uptake rates with depth depending on the nutrient. This functional specialization of roots might contribute to the high growth rates of E. grandis trees, efficiently providing the large amounts of nutrients required throughout the development of these fast-growing plantations.
Resumo:
Measurements based on absorption, reflectance, or luminescence of molecular species or complex ions can be carried out directly on a solid support simultaneously to the retention of the analyte. The use of this strategy in flow-based systems is advantageous in view of the reproducible handling of solutions in retention and elution steps of the analyte. This approach can be exploited to increase sensitivity, minimize reagent consumption as well as waste generation, improve selectivity or for simultaneous determination based on selective retention or differences in sorption rates of the analytes. This review focuses on the main characteristics of direct solid-phase measurements in flow systems, including the discussion of advantages and limitations and practical guidelines to the successful implementation of this approach. Selected applications in diverse fields, such as pharmaceutical, food, and environmental analysis are discussed.
Resumo:
Diabetes mellitus (DM) is a disease that affects a large number of people, and the number of problems associated with the disease has been increasing in the past few decades. These problems include cardiovascular disorders, blindness and the eventual need to amputate limbs. Therefore, the quality of life for people living with DM is less than it is for healthy people. In several cases, metabolic syndrome (MS), which can be considered a disturbance of the lipid metabolism, is associated with DM. In this work, two drugs used to treat DM, pioglitazone and rosiglitazone, were studied using theoretical methods, and their molecular properties were related to the biological activity of these drugs. From the results, it was possible to correlate the properties of each substance-particularly electronic properties-with the biological interactions that are linked to their pharmacological effects. These results suggest that there are future prospects for designing or developing new drugs based on the correlation between theoretical and experimental properties.
Resumo:
We study the evolution of dense clumps and provide an argument that the existence of the clumps is not limited by their crossing times. We claim that the lifetimes of the clumps are determined by turbulent motions on a larger scale, and we predict the correlation of clump lifetime with column density. We use numerical simulations to successfully test this relation. In addition, we study the morphological asymmetry and the magnetization of the clumps as functions of their masses.