969 resultados para Molecular interaction
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach
Resumo:
In the present paper we discuss and compare two different energy decomposition schemes: Mayer's Hartree-Fock energy decomposition into diatomic and monoatomic contributions [Chem. Phys. Lett. 382, 265 (2003)], and the Ziegler-Rauk dissociation energy decomposition [Inorg. Chem. 18, 1558 (1979)]. The Ziegler-Rauk scheme is based on a separation of a molecule into fragments, while Mayer's scheme can be used in the cases where a fragmentation of the system in clearly separable parts is not possible. In the Mayer scheme, the density of a free atom is deformed to give the one-atom Mulliken density that subsequently interacts to give rise to the diatomic interaction energy. We give a detailed analysis of the diatomic energy contributions in the Mayer scheme and a close look onto the one-atom Mulliken densities. The Mulliken density ρA has a single large maximum around the nuclear position of the atom A, but exhibits slightly negative values in the vicinity of neighboring atoms. The main connecting point between both analysis schemes is the electrostatic energy. Both decomposition schemes utilize the same electrostatic energy expression, but differ in how fragment densities are defined. In the Mayer scheme, the electrostatic component originates from the interaction of the Mulliken densities, while in the Ziegler-Rauk scheme, the undisturbed fragment densities interact. The values of the electrostatic energy resulting from the two schemes differ significantly but typically have the same order of magnitude. Both methods are useful and complementary since Mayer's decomposition focuses on the energy of the finally formed molecule, whereas the Ziegler-Rauk scheme describes the bond formation starting from undeformed fragment densities
Resumo:
Es presenta un mètode de selecció d'orbitals atòmics relacionat amb la teoria de la Semblança Molecular Quàntica, que permet reduir l'espai actiu quan es vol dur a terme un càlcul a nivell d'Interacció de Configuracions per a l'àtom d'heli
Resumo:
La present tesi, tot i que emmarcada dins de la teoria de les Mesures Semblança Molecular Quántica (MQSM), es deriva en tres àmbits clarament definits: - La creació de Contorns Moleculars de IsoDensitat Electrònica (MIDCOs, de l'anglès Molecular IsoDensity COntours) a partir de densitats electròniques ajustades. - El desenvolupament d'un mètode de sobreposició molecular, alternatiu a la regla de la màxima semblança. - Relacions Quantitatives Estructura-Activitat (QSAR, de l'anglès Quantitative Structure-Activity Relationships). L'objectiu en el camp dels MIDCOs és l'aplicació de funcions densitat ajustades, ideades inicialment per a abaratir els càlculs de MQSM, per a l'obtenció de MIDCOs. Així, es realitza un estudi gràfic comparatiu entre diferents funcions densitat ajustades a diferents bases amb densitats obtingudes de càlculs duts a terme a nivells ab initio. D'aquesta manera, l'analogia visual entre les funcions ajustades i les ab initio obtinguda en el ventall de representacions de densitat obtingudes, i juntament amb els valors de les mesures de semblança obtinguts prèviament, totalment comparables, fonamenta l'ús d'aquestes funcions ajustades. Més enllà del propòsit inicial, es van realitzar dos estudis complementaris a la simple representació de densitats, i són l'anàlisi de curvatura i l'extensió a macromolècules. La primera observació correspon a comprovar no només la semblança dels MIDCOs, sinó la coherència del seu comportament a nivell de curvatura, podent-se així observar punts d'inflexió en la representació de densitats i veure gràficament aquelles zones on la densitat és còncava o convexa. Aquest primer estudi revela que tant les densitats ajustades com les calculades a nivell ab initio es comporten de manera totalment anàloga. En la segona part d'aquest treball es va poder estendre el mètode a molècules més grans, de fins uns 2500 àtoms. Finalment, s'aplica part de la filosofia del MEDLA. Sabent que la densitat electrònica decau ràpidament al allunyar-se dels nuclis, el càlcul d'aquesta pot ser obviat a distàncies grans d'aquests. D'aquesta manera es va proposar particionar l'espai, i calcular tan sols les funcions ajustades de cada àtom tan sols en una regió petita, envoltant l'àtom en qüestió. Duent a terme aquest procés, es disminueix el temps de càlcul i el procés esdevé lineal amb nombre d'àtoms presents en la molècula tractada. En el tema dedicat a la sobreposició molecular es tracta la creació d'un algorisme, així com la seva implementació en forma de programa, batejat Topo-Geometrical Superposition Algorithm (TGSA), d'un mètode que proporcionés aquells alineaments que coincideixen amb la intuïció química. El resultat és un programa informàtic, codificat en Fortran 90, el qual alinea les molècules per parelles considerant tan sols nombres i distàncies atòmiques. La total absència de paràmetres teòrics permet desenvolupar un mètode de sobreposició molecular general, que proporcioni una sobreposició intuïtiva, i també de forma rellevant, de manera ràpida i amb poca intervenció de l'usuari. L'ús màxim del TGSA s'ha dedicat a calcular semblances per al seu ús posterior en QSAR, les quals majoritàriament no corresponen al valor que s'obtindria d'emprar la regla de la màxima semblança, sobretot si hi ha àtoms pesats en joc. Finalment, en l'últim tema, dedicat a la Semblança Quàntica en el marc del QSAR, es tracten tres aspectes diferents: - Ús de matrius de semblança. Aquí intervé l'anomenada matriu de semblança, calculada a partir de les semblances per parelles d'entre un conjunt de molècules. Aquesta matriu és emprada posteriorment, degudament tractada, com a font de descriptors moleculars per a estudis QSAR. Dins d'aquest àmbit s'han fet diversos estudis de correlació d'interès farmacològic, toxicològic, així com de diverses propietats físiques. - Aplicació de l'energia d'interacció electró-electró, assimilat com a una forma d'autosemblança. Aquesta modesta contribució consisteix breument en prendre el valor d'aquesta magnitud, i per analogia amb la notació de l'autosemblança molecular quàntica, assimilar-la com a cas particular de d'aquesta mesura. Aquesta energia d'interacció s'obté fàcilment a partir de programari mecanoquàntic, i esdevé ideal per a fer un primer estudi preliminar de correlació, on s'utilitza aquesta magnitud com a únic descriptor. - Càlcul d'autosemblances, on la densitat ha estat modificada per a augmentar el paper d'un substituent. Treballs previs amb densitats de fragments, tot i donar molt bons resultats, manquen de cert rigor conceptual en aïllar un fragment, suposadament responsable de l'activitat molecular, de la totalitat de l'estructura molecular, tot i que les densitats associades a aquest fragment ja difereixen degut a pertànyer a esquelets amb diferents substitucions. Un procediment per a omplir aquest buit que deixa la simple separació del fragment, considerant així la totalitat de la molècula (calcular-ne l'autosemblança), però evitant al mateix temps valors d'autosemblança no desitjats provocats per àtoms pesats, és l'ús de densitats de Forats de fermi, els quals es troben definits al voltant del fragment d'interès. Aquest procediment modifica la densitat de manera que es troba majoritàriament concentrada a la regió d'interès, però alhora permet obtenir una funció densitat, la qual es comporta matemàticament igual que la densitat electrònica regular, podent-se així incorporar dins del marc de la semblança molecular. Les autosemblances calculades amb aquesta metodologia han portat a bones correlacions amb àcids aromàtics substituïts, podent així donar una explicació al seu comportament. Des d'un altre punt de vista, també s'han fet contribucions conceptuals. S'ha implementat una nova mesura de semblança, la d'energia cinètica, la qual consisteix en prendre la recentment desenvolupada funció densitat d'energia cinètica, la qual al comportar-se matemàticament igual a les densitats electròniques regulars, s'ha incorporat en el marc de la semblança. A partir d'aquesta mesura s'han obtingut models QSAR satisfactoris per diferents conjunts moleculars. Dins de l'aspecte del tractament de les matrius de semblança s'ha implementat l'anomenada transformació estocàstica com a alternativa a l'ús de l'índex Carbó. Aquesta transformació de la matriu de semblança permet obtenir una nova matriu no simètrica, la qual pot ser posteriorment tractada per a construir models QSAR.
Resumo:
A family of 16 isomolecular salts (3-XpyH)(2)[MX'(4)] (3-XpyH=3-halopyridinium; M=Co, Zn; X=(F), Cl, Br, (I); X'=Cl, Br, I) each containing rigid organic cations and tetrahedral halometallate anions has been prepared and characterized by X-ray single crystal and/or powder diffraction. Their crystal structures reflect the competition and cooperation between non-covalent interactions: N-H center dot center dot center dot X'-M hydrogen bonds, C-X center dot center dot center dot X'-M halogen bonds and pi-pi stacking. The latter are essentially unchanged in strength across the series, but both halogen bonds and hydrogen bonds are modified in strength upon changing the halogens involved. Changing the organic halogen (X) from F to I strengthens the C-X center dot center dot center dot X'-M halogen bonds, whereas an analogous change of the inorganic halogen (X') weakens both halogen bonds and N-H center dot center dot center dot X'-M hydrogen bonds. By so tuning the strength of the putative halogen bonds from repulsive to weak to moderately strong attractive interactions, the hierarchy of the interactions has been modified rationally leading to systematic changes in crystal packing. Three classes of crystal structure are obtained. In type A (C-F center dot center dot center dot X'-M) halogen bonds are absent. The structure is directed by N-H center dot center dot center dot X'-M hydrogen bonds and pi-stacking interactions. In type B structures, involving small organic halogens (X) and large inorganic halogens (X'), long (weak) C-X center dot center dot center dot X'-M interactions are observed with type I halogen-halogen interaction geometries (C-X center dot center dot center dot X' approximate to X center dot center dot center dot X'-M approximate to 155 degrees), but hydrogen bonds still dominate. Thus, minor but quite significant perturbations from the type A structure arise. In type C, involving larger organic halogens (X) and smaller inorganic halogens (X'), stronger halogen bonds are formed with a type II halogen-halogen interaction geometry (C-X center dot center dot center dot X' approximate to 180 degrees; X center dot center dot center dot X'-M approximate to 110 degrees) that is electrostatically attractive. The halogen bonds play a major role alongside hydrogen bonds in directing the type C structures, which as a result are quite different from type A and B.
Resumo:
Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Interaction force constants between bond-stretching and angle-bending co-ordinates in polyatomic molecules have been attributed, by some authors, to changes of hybridization due to orbital-following of the bending co-ordinate, and consequent changes of bond length due to the change of hybridization. A method is described for using this model quantitatively to reduce the number of independent force constants in the potential function of a polyatomic molecule, by relating stretch-bend interaction constants to the corresponding diagonal stretching constants. It is proposed to call this model the Hybrid Orbital Force Field. The model is applied to the tetrahedral four co-ordinated carbon atom (as in methane) and to the trigonal planar three coordinated carbon atom (as in formaldehyde).
Resumo:
Formulas are obtained for the intensity asymmetry (Herman-Wallis) factors in the ν3 and ν4 fundamentals of methane due to the ζ34 Coriolis interaction. The results are also applicable to the ν3 and ν4 bands of SF6.
Resumo:
The interaction between four flavonoids (catechin, epicatechin, rutin and quercetin) and bovine serum albumin (BSA) was investigated using tryptophan fluorescence quenching. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between the flavonoids and BSA. The binding affinity was found to be strongest for quercetin, and ranked in the order quercetin>rutin>epicatechin=catechin. The pH in the range of 5 to 7.4 does not affect significantly (p<0.05) the association of rutin, epicatechin and catechin with BSA, but quercetin exhibited a stronger affinity at pH 7.4 than at lower pH (p<0.05). Quercetin has a total quenching effect on BSA tryptophan fluorescence at a molar ratio of 10:1 and rutin at approximately 25:1. However, epicatechin and catechin did not fully quench tryptophan fluorescence over the concentration range studied. Furthermore, the data suggested that the association between flavonoids and BSA did not change molecular conformation of BSA and that hydrogen bonding, ionic and hydrophobic interaction are equally important driving forces for protein-flavonoid association.
Resumo:
The assembly of HIV is relatively poorly investigated when compared with the process of virus entry. Yet a detailed understanding of the mechanism of assembly is fundamental to our knowledge of the complete life cycle of this virus and also has the potential to inform the development of new antiviral strategies. The repeated multiple interaction of the basic structural unit, Gag, might first appear to be little more than concentration dependent self-assembly but the precise mechanisms emerging for HIV are far from simple. Gag interacts not only with itself but also with host cell lipids and proteins in an ordered and stepwise manner. It binds both the genomic RNA and the virus envelope protein and must do this at an appropriate time and place within the infected cell. The assembled virus particle must successfully release from the cell surface and, whilst being robust enough for transmission between hosts, must nonetheless be primed for rapid disassembly when infection occurs. Our current understanding of these processes and the domains of Gag involved at each stage is the subject of this review. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Atomistic molecular dynamics simulations are used to investigate the mechanism by which the antifreeze protein from the spruce budworm, Choristoneura fumiferana, binds to ice. Comparison of structural and dynamic properties of the water around the three faces of the triangular prism-shaped protein in aqueous solution reveals that at low temperature the water structure is ordered and the dynamics slowed down around the ice-binding face of the protein, with a disordering effect observed around the other two faces. These results suggest a dual role for the solvation water around the protein. The preconfigured solvation shell around the ice-binding face is involved in the initial recognition and binding of the antifreeze protein to ice by lowering the barrier for binding and consolidation of the protein:ice interaction surface. Thus, the antifreeze protein can bind to the molecularly rough ice surface by becoming actively involved in the formation of its own binding site. Also, the disruption of water structure around the rest of the protein helps prevent the adsorbed protein becoming covered by further ice growth.
Resumo:
Nutrition science finds itself at a major crossroad. On the one hand we can continue the current path, which has resulted in some substantial advances, but also many conflicting messages which impair the trust of the general population, especially those who are motivated to improve their health through diet. The other road is uncharted and is being built over the many exciting new developments in life sciences. This new era of nutrition recognizes the complex relation between the health of the individual, its genome, and the life-long dietary exposure, and has lead to the realisation that nutrition is essentially a gene - environment interaction science. This review on the relation between genotype, diet and health is the first of a series dealing with the major challenges in molecular nutrition, analyzing the foundations of nutrition research. With the unravelling of the human genome and the linking of its variability to a multitude of phenotypes from " healthy'' to an enormously complex range of predispositions, the dietary modulation of these propensities has become an area of active research. Classical genetic approaches applied so far in medical genetics have steered away from incorporating dietary effects in their models and paradoxically, most genetic studies analyzing diet-associated phenotypes and diseases simply ignore diet. Yet, a modest but increasing number of studies are accounting for diet as a modulator of genetic associations. These range from observational cohorts to intervention studies with prospectively selected genotypes. New statistical and bioinformatics approaches are becoming available to aid in design and evaluation of these studies. This review discusses the various approaches used and provides concrete recommendations for future research.
Resumo:
An elastomeric, healable, supramolecular polymer blend comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl end groups is compatibilized by aromatic pi-pi stacking between the pi-electron-deficient diimide groups and the pi-electron-rich pyrenyl units. This interpolymer interaction is the key to forming a tough, healable, elastomeric material. Variable-temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the pi-pi stacking interactions. Variable-temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.
Resumo:
We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges oil larger units in the polymer chain.
Resumo:
We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.