984 resultados para Molecular Recognition
Resumo:
The susceptibility of most Bacillus anthracis strains to β-lactam antibiotics is intriguing considering that the B. anthracis genome harbors two β-lactamase genes, bla1 and bla2, and closely-related species, Bacillus cereus and Bacillus thuringiensis, typically produce β-lactamases. This work demonstrates that B. anthracis bla expression is affected by two genes, sigP and rsp, predicted to encode an extracytoplasmic function sigma factor and an antisigma factor, respectively. Deletion of the sigP/rsp locus abolished bla expression in a penicillin-resistant clinical isolate and had no effect on bla expression in a prototypical penicillin-susceptible strain. Complementation with sigP/rsp from the penicillin-resistant strain, but not the penicillin-susceptible strain, conferred β-lactamase activity upon both mutants. These results are attributed to a nucleotide deletion near the 5' end of rsp in the penicillin-resistant strain that is predicted to result in a nonfunctional protein. B. cereus and B. thuringiensis sigP and rsp homologues are required for inducible penicillin resistance in those species. Expression of the B. cereus or B. thuringiensis sigP and rsp genes in a B. anthracis sigP/rsp-null mutant confers resistance to β-lactam antibiotics, suggesting that while B. anthracis contains the genes necessary for sensing β-lactam antibiotics, the B. anthracis sigP/rsp gene products are insufficient for bla induction. ^ Because alternative sigma factors recognize unique promoter sequence, direct targets can be elucidated by comparing transcriptional profiling results with an in silico search using the sigma factor binding sequence. Potential σP -10 and -35 promoter elements were identified upstream from bla1 bla2 and sigP. Results obtained from searching the B. anthracis genome with the conserved sequences were evaluated against transcriptional profiling results comparing B. anthracis 32 and an isogenic sigP/rsp -null strain. Results from these analyses indicate that while the absence of the sigP gene significantly affects the transcript levels of 16 genes, only bla1, bla2 and sigP are directly regulated by σP. The genomes of B. cereus and B. thuringiensis strains were also analyzed for the potential σP binding elements. The sequence was located upstream from the sigP and bla genes, and previously unidentified genes predicted to encode a penicillin-binding protein (PBP) and a D-alanyl-D-alanine carboxypeptidase, indicating that the σ P regulon in these species responds to cell-wall stress caused by β-lactam antibiotics. ^ β-lactam antibiotics prevent attachment of new peptidoglycan to the cell wall by blocking the active site of PBPs. A B. cereus and B. thuringiensis pbp-encoding gene located near bla1 contains a potential σP recognition sequence upstream from the annotated translational start. Deletion of this gene abolished β-lactam resistance in both strains. Mutations in the active site of the PBP were detrimental to β-lactam resistance in B. cereus, but not B. thuringiensis, indicating that the transpeptidase activity is only important in B. cereus. I also found that transcript levels of the PBP-encoding gene are not significantly affected by the presence of β-lactam antibiotic. Based on these data I hypothesize that the gene product acts a sensor of β-lactam antibiotic. ^
Resumo:
The DNA replication polymerases δ and ϵ have an inherent proofreading mechanism in the form of a 3'→5' exonuclease. Upon recognition of errant deoxynucleotide incorporation into DNA, the nascent primer terminus is partitioned to the exonuclease active site where the incorrectly paired nucleotide is excised before resumption of polymerization. The goal of this project was to identify the cellular and molecular consequences of an exonuclease deficiency. The proofreading capability of model system MEFs with EXOII mutations was abolished without altering polymerase function.^ It was hypothesized that 3'→5' exonucleases of polymerases δ and ϵ are critical for prevention of replication stress and important for sensitization to nucleoside analogs. To test this hypothesis, two aims were formulated: Determine the effect of the exonuclease active site mutation on replication related molecular signaling and identify the molecular consequences of an exonuclease deficiency when replication is challenged with nucleoside analogs.^ Via cell cycle studies it was determined that larger populations of exonuclease deficient cells are in the S-phase. There was an increase in levels of replication proteins, cell population growth and DNA synthesis capacity without alteration in cell cycle progression. These findings led to studies of proteins involved in checkpoint activation and DNA damage sensing. Finally, collective modifications at the level of DNA replication likely affect the strand integrity of DNA at the chromosomal level.^ Gemcitabine, a DNA directed nucleoside analog is a substrate of polymerases δ and ϵ and exploits replication to become incorporated into DNA. Though accumulation of gemcitabine triphosphate was similar in all cell types, incorporation into DNA and rates of DNA synthesis were increased in exonuclease defective cells and were not consistent with clonogenic survival. This led to molecular signaling investigations which demonstrated an increase in S-phase cells and activation of a DNA damage response upon gemcitabine treatment.^ Collectively, these data indicate that the loss of exonuclease results in a replication stress response that is likely required to employ other repair mechanisms to remove unexcised mismatches introduced into DNA during replication. When challenged with nucleoside analogs, this ongoing stress response coupled with repair serves as a resistance mechanism to cell death.^
Resumo:
The combitiatorial approach restriction endonuclease protection selection and amplification REPSA was successfully used to determine ideal DNA interactions sites of covalent ligands. Unlike most other combinatorial methods, REPSA is based on inhibition of enzymatic cleavage by specific ligand-DNA complexes, which enables identification of binding sites of various ligands. However, the inherent nature of this technique posses a problem during selection of binding sites of covalent ligands. By modifying the technique according to the nature of the ligand, we demonstrate the flexibility of REPSA in identifying the preferred binding sites for monocovalent ligands, topoisomerase I and tallimustine, and the bicovalent ligand topoisomerase II. From among the preferred binding sites, we identified the consensus binding sequence of camptothecin induced topoisomerase I cleavage as ‘aGWT/Gc’, and tallimustine consensus sequences as ‘GTTCTA’ and ‘TTTTTTC’. We have shown for the first time that preferential binding of tallimustine occurs at sequences not previously reported. Furthermore, our data indicate that tallimustine is a novel DNA minor groove, guanine-specific alkylating agent. ^ Additionally, we have demonstrated in vivo that sequence-specific covalent DNA-binding small molecules have the ability to regulate transcription by inhibiting RNA polymerase II. Tallimustine, binding to its preferred sequences located in the 5′ untranslated region were an effective impediment for transcribing polymerase II. The ability of covalent binding small molecules to target predetermined DNA sequences located downstream of the promoter suggests a general approach for regulation of gene expression. ^
Resumo:
The recognition of finely disseminated gas hydrate in deep marine sediments heavily depends on various indirect techniques because this mineral quickly decomposes upon recovery from in situ pressure and temperature conditions. Here, we discuss molecular properties of closely spaced gas voids (formed as a result of core recovery) and gas hydrates from an area of relatively low gas flux at the flanks of the southern Hydrate Ridge offshore Oregon (ODP Sites 1244, 1245 and 1247). Within the gas hydrate occurrence zone (GHOZ), the concentration of ethane (C2) and propane (C3) in adjacent gas voids shows large variability. Sampled gas hydrates are enriched in C2 relative to void gases but do not contain C3. We suggest that the observed variations in the composition of void gases is a result of molecular fractionation during crystallization of structure I gas hydrate that contains C2 but excludes C3 from its crystal lattice. This hypothesis is used to identify discrete intervals of finely disseminated gas hydrate in cored sediments. Variations in gas composition help better constrain gas hydrate distribution near the top of the GHOZ along with variations in pore water chemistry and core temperature. Sediments near the base of the gas hydrate stability zone are relatively enriched in C2+ hydrocarbon gases. Complex and poorly understood geological and geochemical processes in these deeper sediments make the identification of gas hydrate based on molecular properties of void gases more ambiguous. The proposed technique appears to be a useful tool to better understand the distribution of gas hydrate in marine sediments and ultimately the role of gas hydrate in the global carbon cycle.
Resumo:
Helper T cells are triggered by molecular complexes of antigenic peptides and class II proteins of the major histocompatibility complex . The formation of stable complexes between class II major histocompatibility complex proteins and antigenic peptides is often accompanied by the formation of a short-lived complex. In this report, we describe T cell recognition of two distinct complexes, one short-lived and the other long-lived, formed during the binding of an altered myelin basic protein peptide to I-Ak. One myelin basic protein-specific T cell clone is triggered by only the short-lived complex, and another is triggered by only the stable complex. Thus, a single peptide bound to a particular class II molecule can activate different T cells depending on the conditions of the binding reaction.
Resumo:
The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coli which, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4.5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and ΔμH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.
Resumo:
Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.
Resumo:
Nondistorting C4′ backbone adducts serve as molecular tools to analyze the strategy by which a limited number of human nucleotide excision repair (NER) factors recognize an infinite variety of DNA lesions. We have constructed composite DNA substrates containing a noncomplementary site adjacent to a nondistorting C4′ adduct to show that the loss of hydrogen bonding contacts between partner strands is an essential signal for the recruitment of NER enzymes. This specific conformational requirement for excision is mediated by the affinity of xeroderma pigmentosum group A (XPA) protein for nonhybridizing sites in duplex DNA. XPA recognizes defective Watson–Crick base pair conformations even in the absence of DNA adducts or other covalent modifications, apparently through detection of hydrophobic base components that are abnormally exposed to the double helical surface. This recognition function of XPA is enhanced by replication protein A (RPA) such that, in combination, XPA and RPA constitute a potent molecular sensor of denatured base pairs. Our results indicate that the XPA–RPA complex may promote damage recognition by monitoring Watson–Crick base pair integrity, thereby recruiting the human NER system preferentially to sites where hybridization between complementary strands is weakened or entirely disrupted.
Resumo:
Apoptosis is recognized as important for normal cellular homeostasis in multicellular organisms. Although there have been great advances in our knowledge of the molecular events regulating apoptosis, much less is known about the receptors on phagocytes responsible for apoptotic cell recognition and phagocytosis or the ligands on apoptotic cells mediating such recognition. The observations that apoptotic cells are under increased oxidative stress and that oxidized low-density lipoprotein (OxLDL) competes with apoptotic cells for macrophage binding suggested the hypothesis that both OxLDL and apoptotic cells share oxidatively modified moieties on their surfaces that serve as ligands for macrophage recognition. To test this hypothesis, we used murine monoclonal autoantibodies that bind to oxidation-specific epitopes on OxLDL. In particular, antibodies EO6 and EO3 recognize oxidized phospholipids, including 1-palmitoyl 2-(5-oxovaleroyl) phosphatidylcholine (POVPC), and antibodies EO12 and EO14 recognize malondialdehyde-lysine, as in malondialdehyde-LDL. Using FACS analysis, we demonstrated that each of these EO antibodies bound to apoptotic cells but not to normal cells, whereas control IgM antibodies did not. Confocal microscopy demonstrated cell-surface expression of the oxidation-specific epitopes on apoptotic cells. Furthermore, each of these antibodies inhibited the phagocytosis of apoptotic cells by elicited peritoneal macrophages, as did OxLDL. In addition, an adduct of POVPC with BSA also effectively prevented phagocytosis. These data demonstrate that apoptotic cells express oxidation-specific epitopes—including oxidized phospholipids—on their cell surface, and that these serve as ligands for recognition and phagocytosis by elicited macrophages.
Resumo:
The crystal structure of the murine Fab S-20-4 from a protective anti-cholera Ab specific for the lipopolysaccharide Ag of the Ogawa serotype has been determined in its unliganded form and in complex with synthetic fragments of the Ogawa O-specific polysaccharide (O-SP). The upstream terminal O-SP monosaccharide is shown to be the primary antigenic determinant. Additional perosamine residues protrude outwards from the Ab surface and contribute only marginally to the binding affinity and specificity. A complementary water-excluding hydrophobic interface and five Ab–Ag hydrogen bonds are crucial for carbohydrate recognition. The structure reported here explains the serotype specificity of anti-Ogawa Abs and provides a rational basis toward the development of a synthetic carbohydrate-based anti-cholera vaccine.
Resumo:
The specific formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF; EC 2.1.2.9) is important for the initiation of protein synthesis in eubacteria and in eukaryotic organelles. The determinants for formylation in the tRNA are clustered mostly in the acceptor stem. As part of studies on the molecular mechanism of recognition of the initiator tRNA by MTF, we report here on the isolation and characterization of suppressor mutations in Escherichia coli MTF, which compensate for the formylation defect of a mutant initiator tRNA, lacking a critical determinant in the acceptor stem. We show that the suppressor mutant in MTF has a glycine-41 to arginine change within a 16-amino acid insertion found in MTF from many sources. A mutant with glycine-41 changed to lysine also acts as a suppressor, whereas mutants with changes to aspartic acid, glutamine, and leucine do not. The kinetic parameters of the purified wild-type and mutant Arg-41 and Lys-41 enzymes, determined by using the wild-type and mutant tRNAs as substrates, show that the Arg-41 and Lys-41 mutant enzymes compensate specifically for the strong negative effect of the acceptor stem mutation on formylation. These and other considerations suggest that the 16-amino acid insertion in MTF plays an important role in the specific recognition of the determinants for formylation in the acceptor stem of the initiator tRNA.
Resumo:
The human thrombopoietin (TPO) gene, which codes for the principal cytokine involved in platelet maturation, shows a peculiar alternative splicing of its last exon, where an intra-exonic 116 nt alternative intron is spliced out in a fraction of its mRNA. To characterize the molecular mechanism underlying this alternative splicing, minigenes of TPO genomic constructs with variable exon–intron configurations or carrying exclusively the TPO cDNA were generated and transiently transfected in the Hep3B cell line. We have found that the final rate of the alternative intron splicing is determined by three elements: the presence of upstream constitutive introns, the suboptimal splice sites of the alternative intron and the length of the alternative intron itself. Our results indicate that the recognition of suboptimal intra-exonic splice junctions in the TPO gene is influenced by the assembly of the spliceosome complex on constitutive introns and by a qualitative scanning of the sequence by the transcriptional/splicing machinery complex primed by upstream splicing signals.
Resumo:
Self-incompatibility RNases (S-RNases) are an allelic series of style glycoproteins associated with rejection of self-pollen in solanaceous plants. The nucleotide sequences of S-RNase alleles from several genera have been determined, but the structure of the gene products has only been described for those from Nicotiana alata. We report on the N-glycan structures and the disulfide bonding of the S3-RNase from wild tomato (Lycopersicon peruvianum) and use this and other information to construct a model of this molecule. The S3-RNase has a single N-glycosylation site (Asn-28) to which one of three N-glycans is attached. S3-RNase has seven Cys residues; six are involved in disulfide linkages (Cys-16-Cys-21, Cys-46-Cys-91, and Cys-166-Cys-177), and one has a free thiol group (Cys-150). The disulfide-bonding pattern is consistent with that observed in RNase Rh, a related RNase for which radiographic-crystallographic information is available. A molecular model of the S3-RNase shows that four of the most variable regions of the S-RNases are clustered on one surface of the molecule. This is discussed in the context of recent experiments that set out to determine the regions of the S-RNase important for recognition during the self-incompatibility response.
Resumo:
Gene recognition is one of the most important problems in computational molecular biology. Previous attempts to solve this problem were based on statistics, and applications of combinatorial methods for gene recognition were almost unexplored. Recent advances in large-scale cDNA sequencing open a way toward a new approach to gene recognition that uses previously sequenced genes as a clue for recognition of newly sequenced genes. This paper describes a spliced alignment algorithm and software tool that explores all possible exon assemblies in polynomial time and finds the multiexon structure with the best fit to a related protein. Unlike other existing methods, the algorithm successfully recognizes genes even in the case of short exons or exons with unusual codon usage; we also report correct assemblies for genes with more than 10 exons. On a test sample of human genes with known mammalian relatives, the average correlation between the predicted and actual proteins was 99%. The algorithm correctly reconstructed 87% of genes and the rare discrepancies between the predicted and real exon-intron structures were caused either by short (less than 5 amino acids) initial/terminal exons or by alternative splicing. Moreover, the algorithm predicts human genes reasonably well when the homologous protein is nonvertebrate or even prokaryotic. The surprisingly good performance of the method was confirmed by extensive simulations: in particular, with target proteins at 160 accepted point mutations (PAM) (25% similarity), the correlation between the predicted and actual genes was still as high as 95%.
Resumo:
To investigate the molecular mechanism for stereospecific binding of agonists to beta 2-adrenergic receptors we used receptor models to identify potential binding sites for the beta-OH-group of the ligand, which defines the chiral center. Ser-165, located in transmembrane helix IV, and Asn-293, situated in the upper half of transmembrane helix VI, were identified as potential binding sites. Mutation of Ser-165 to Ala did not change the binding of either isoproterenol isomer as revealed after transient expression in human embryonic kidney (HEK)-293 cells. In contrast, a receptor mutant in which Asn-293 was replaced by Leu showed substantial loss of stereospecific isoproterenol binding. Adenylyl cyclase stimulation by this mutant after stable expression in CHO cells confirmed the substantial loss of stereospecificity for isoproterenol. In a series of agonists the loss of affinity in the Leu-293 mutant receptor was strongly correlated with the intrinsic activity of the compounds. Full agonists showed a 10-30-fold affinity loss, whereas partial agonists had almost the same affinity for both receptors. Stereospecific recognition of antagonists was unaltered in the Leu-293 mutant receptor. These data indicate a relationship between stereospecificity and intrinsic activity of agonists and suggest that Asn-293 is important for both properties of the agonist-receptor interaction.