943 resultados para Modified glassy carbon electrode
Resumo:
In this paper, the technique of differential pulse voltammetry (DPV) has been studied for monitoring the concentration of oxalic acid (OA) during their electrochemical oxidation (EO) in acidic medium using platinum anode supported on titanium (Ti / Pt). The DPV was standardized and optimized using a glassy carbon electrode modified with cysteine. The modification with cysteine was developed electrochemically, forming a polymeric film on the surface of the glassy carbon electrode. The formation of the polymer film was confirmed by analysis of scanning electron microscope and atomic force microscope, confirming the modification of the electrode. The electrochemical degradation was developed using different current densities 10, 20 30 and 40 mA cm -2 electrode with Ti / Pt observing the degradation of oxalic acid, and monitored using the method of KMnO4 titration. However, the analyzes with DPV showed the same behavior elimination of oxalic acid titration. Compared with the titration method classical observed and DPV could be a good fit, confidence limits of detection and confirming the applicability of the technique electroanalytical for monitoring the degradation of oxalic acid
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glassy carbon can be manufactured practically without pores, named Monolithic Vitreous Carbon (MVC) or presenting up to 98% in transport pore volume, foam form, denominated Reticulated Vitreous Carbon (RVC). The glassy carbon processing is affected by some processing parameters, among them it can be cited the resin viscosity. The present work involves the optimization of RVC manufacture by monitoring the polyurethane (PU) foam impregnation with furfuryl alcohol resin with different viscosity values, which were obtained by dilution of the resin with different amounts of furfuryl alcohol. The resin samples used in the PU impregnation were characterized by thermal and rheological analyses. These results were correlated with scanning electron microscopy observations and compression test results of the impregnated polyurethane foam. The results show that the rheological behavior of the resin has significant influence on the polymerization step, affecting the homogeneity of impregnated foam and, consequently, its final properties, mainly the mechanical one. The impregnated foam prepared with the furfuryl alcohol resin diluted with 10% of furfuryl alcohol (eta = 11.4 Pa s) showed higher compression values (0.26 MPa). (c) 2007 Wiley Periodicals, Inc.
Resumo:
This work describes an electroanalytical method for determining gold(I) thiomalate, aurothiomalate, widely used for treatment of reumatoid arthiritis, using a screen-printed carbon electrode (SPCE). Aurothiomalate (AuTM) was determined indirectly at the same electrode by accumulating it first at -1.5 V vs. printed carbon. At this potential in the adsorbed state, the AuTM is reduced to Au(0), which is then oxidized at two steps at -0.22 V and +0.54 V on SPCE. Using optimized conditions of 60 s deposition time, -1.5 V (vs. printed carbon) accumulation potential, 100 mV s(-1) scan rate, linear calibration graphs can be obtained by monitoring the peak at +0.54 V for AuTM in HCl 0.1 mol L-1 from 1.43 x 10(-6) to 1.55 x 10(-4) mol L-1. A limit of detection obtained was 6.50 x 10(-7) mol L-1, and the relative standard deviation from five measurements of 3.0 x 10(-5) mol L-1 AuTM is 4.5%. The method was successfully applied for AuTM determination in human urine sample.
Resumo:
A rapid and simple method for procaine determination was developed by flow injection analysis (FIA) using a screen-printed carbon electrode (SPCE) as amperometric detector. The present method is based on the amine/hydroxylamine oxidation from procaine monitored at 0.80 V on SPCE in sodium acetate solution pH 6.0. Using the best experimental conditions assigned as: pH 6.0, flow rate of 3.8 mL min(-1), sample volume of 100 mu L and analytical path of 30 cm it is possible to construct a linear calibration curve from 9.0 x 10(-6) to 1.0 x 10(-4) mol L-1. The relative standard deviation for 5.0 x 10(-5) mol L-1 procaine (15 repetitions using the same electrode) is 3.2% and detection limit calculated is 6.0 x 10(-6) mol L-1. Recoveries obtained for procaine gave a mean values from 94.8 to 102.3% and an analytical frequency of 36 injections per hour was achieved. The method was successfully applied for the determination of procaine in pharmaceutical formulation without any pre-treatment, which are in good accordance with the declared values of manufacturer and an official method based on spectrophotometric analysis. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Sodium nitroprusside (NP), a commercial vasodilator, can be pre-concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% Poly-L-lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B-R buffer pH 4.0, were 1 x 10(-6) to 2 x 10-(5) mol L-1 and 1 x 10(-7) mol L-1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95-97% without any pre treatment.
Resumo:
The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for indole (-2.27 V) and carbazole (-2.67 V) versus Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L-1 and a limit of detection (L.O.D) of 7.48 and 2.66 mu g L-1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 +/- 0.3 and 64.6 +/- 0.9 mg L-1 and in spiked diesel samples were 9.29 +/- 1 and 142 +/- 1 mg L-1, respectively. The recovery was evaluated and the results shown the values of 88.9 +/- 0.4 and 90.2 +/- 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work presents a surface study of monolithic vitreous (or glassy) carbon - MVC - obtained from vitreous carbon powder. Defective MVC pieces are crushed in a ball mill and size classified by sifting. The MVC powder is mixed with furfuryl-alcohol resin and compacted in a mould using a hydraulic press. Samples with different powder granulometries are produced in this way and carbonized in a furnace under nitrogen atmosphere. Complete carbonization of the powder is achieved in only one day and losses due to breakage of the pieces is less than 5%. These results compare very favorably with respect to traditional MVC production methods where full carbonization may require up to seven days and losses due to breakage can be as high as 70%. After carbonization, samples are sanded and polished. Surface roughness and microstructure are characterized by light microscopy. Porosity is quantified from micrographs using ImageJ software and nanometric height variations are measured by atomic force microscopy. © 2012 Materials Research Society.
Resumo:
This work describes the characterization of the [Mn2 IV,IVO2(terpy)2(H2O)2]4+ complex in aqueous solution by UV-vis spectrophotometry, cyclic voltammetry, and linear sweep voltammetry with a rotating disk electrode. The pH effect, potential scan rate, effect of perfluorosulfonate polymer, and anion of supporting electrode on the electrochemical behavior of the modified electrode for better performance were investigated. The potential peak of the modified electrode was linearly dependent upon the ratio [ionic charge]/[ionic radius]. The modified electrode exerted an electrocatalytic effect on dopamine oxidation in aqueous solution with a decrease in the overpotential compared with the unmodified glassy carbon electrode. This way, the modified electrode showed an enzymatic biomimicking behavior. Tafel plot analyses were used to elucidate the kinetics and mechanism of dopamine oxidation. © 2013 Springer Science+Business Media New York.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of contaminants, such as phosphate, in biodiesel, has several drawbacks for instance: current engines perform poorly, fuel tanks deteriorate, catalytic conversion is damaged, and particles emission is increased. Therefore, biodiesel quality control is extremely important for biodiesel acceptance and commercialization worldwide. In this context, a bare glassy carbon electrode (GCE) and another chemically modified electrode with iron hexacyanoferrate (Prussian Blue – PB) were developed for determination of phosphate in biodiesel. The LODs of 6.44 and 1.19 mg kg−1, and LOQs of 21.43 and 3.97 mg kg−1 were obtained for the bare GCE and the PB-modified GCE, respectively. The methodology was employed for analysis of Brazilian biodiesel samples, and it led to satisfactory results, demonstrating its potential application for biodiesel quality control. Additionally, recovery and interference tests were conducted, which revealed that the developed methods are suitable for analysis of phosphate in biodiesel samples.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)