1000 resultados para Modified Thurow appliance
Resumo:
The well-known Jeans criterion describes the onset of instabilities in an infinite, homogeneous, self-gravitating medium supported by pressure. Most realistic astrophysical systems, however, are not isolated - instead they are under the influence of an external field such as the tidal field due to a neighbour. Here, we do a linear perturbation analysis for a system in an external field and obtain a generalized dispersion relation that depends on the wavenumber, the sound speed and also the magnitude of the tidal field. A typical, disruptive tidal field is shown to make the system more stable against perturbations, and results in a higher effective Jeans wavelength. The minimum mass that can become unstable is then higher (super-Jeans) than the usual Jeans mass. Conversely, in a compressive tidal field, perturbations can grow even when the mass is lower (sub-Jeans). This approach involving the inclusion of tidal field opens up a new way of looking at instabilities in gravitating systems. The treatment is general and the simple analytical form of the modified Jeans criterion obtained makes it easily accessible.
Resumo:
Bentonite in slurry walls needs to be amended with organo-clay to control the migration of organic contaminants. Consolidation behaviour of the slurry is important because it will reduce the total effective stress owing to mobilisation of frictional force between the side wall of the trench and the slurry. Compressibility of the slurry of bentonite is expected to undergo significant changes owing to amendment with organo-clay and according to the nature of the fluid. Standard one-dimensional consolidation tests were carried out on slurries of bentonite, organo-clay and their mixtures by remoulding them to their respective liquid limit consistency with water as well as fluids of low polarity, such as carbon tetrachloride, and inundating with different fluids. Organo-clay and its mixture with bentonite when moulded with water exhibit lower compressibility than bentonite in any pore fluid, but their compressibility increases when moulded with carbon tetrachloride and inundated with the same fluid. These changes in the compressibility of bentonite amended with organo-clay are explained by particle rearrangements, changes in the development of the diffuse double layer and contribution from the water adsorbed in the inter-lamellar space of the clay.
Resumo:
Analysis of a microstrip line with a symmetrically located aperture in its ground plane is reported in this paper. The solution is based on conformal mapping technique. Conformal mapping has been used to determine the characteristic impedance and effective permittivity of the line. The accuracy of results is within 5% error. An low pass filter has been designed based on the electrical parameters obtained using the proposed method.
Resumo:
Donor-acceptor-donor-structured thiophene derivative-based conducting polymer poly(7,9-dithiophene-2yl-8H-cyclopentaa]acenaphthalene-8-one) was chemically synthesized. This polymer was used to modify both glassy-carbon and carbon-paste electrode, which was used to detect lead(II) ions present in water in the range of 1 mM to 0.1 mu M. Cyclic voltammetry confirms the formation of the co-ordination complex between the soft segment of polymer and the dissolved lead ion. Anodic stripping voltammetry was carried out by the modified electrode to determine the lower limit of detection of dissolved lead(II) species in the solution. Differential adsorptive stripping and impedance measurements were also conducted to find the lowest possible response of the as-synthesized polymer to lead(II) ion in water. The electrochemical performance of the modified electrodes at different pH (4, 7 and 9) environments was carried out by stripping voltammetry, to get optimum sensitivity and stability under these conditions. Finally, interference analysis was carried out to detect the modified electrode's sensitivity towards lead ion affinity in water.
Resumo:
A guidance law derived by modifying state dependent Riccati equation technique, to enable the imposition of a predetermined terminal intercept angle to a maneuvering target, is presented in this paper. The interceptor is assumed to have no knowledge about the type of maneuver the target is executing. The problem is cast in a non-cooperative game theoretic form. The guidance law obtained is dependent on the LOS angular rotational rate and on the impact angle error. Theoretical conditions which guarantee existence of solutions under this method have been derived. It is shown that imposing the impact angle constraint calls for an increase in the gains of the guidance law considerably, subsequently requiring a higher maneuverability advantage of the interceptor. The performance of the proposed guidance law is studied using a non-linear two dimensional simulation of the relative kinematics, assuming first order dynamics for the interceptor and target.
Resumo:
This paper explains the algorithm of Modified Roaming Optimization (MRO) for capturing the multiple optima for multimodal functions. There are some similarities between the Roaming Optimization (RO) and MRO algorithms, but the MRO algorithm is created to overcome the problems facing while applying the RO to the problems possessing large number of solutions. The MRO mainly uses the concept of density to overcome the challenges posed by RO. The algorithm is tested with standard test functions and also discussions are made to improve the efficacy of the MRO algorithm. This paper also gives the results of MRO applied for solving Inverse Kinematics (IK) problem for SCARA and PUMA robots.
Resumo:
Spatial resolution in photoacoustic and thermoacoustic tomography is ultrasound transducer (detector) bandwidth limited. For a circular scanning geometry the axial (radial) resolution is not affected by the detector aperture, but the tangential (lateral) resolution is highly dependent on the aperture size, and it is also spatially varying (depending on the location relative to the scanning center). Several approaches have been reported to counter this problem by physically attaching a negative acoustic lens in front of the nonfocused transducer or by using virtual point detectors. Here, we have implemented a modified delay-and-sum reconstruction method, which takes into account the large aperture of the detector, leading to more than fivefold improvement in the tangential resolution in photoacoustic (and thermoacoustic) tomography. Three different types of numerical phantoms were used to validate our reconstruction method. It is also shown that we were able to preserve the shape of the reconstructed objects with the modified algorithm. (C) 2014 Optical Society of America
Resumo:
Bentonite clay is identified as potential buffer in deep geological repositories (DGR) that store high level radioactive wastes (HLW) as the expansive clay satisfies the expected mechanical and physicochemical functions of the buffer material. In the deep geological disposal of HLW, iodine-129 is one of the significant nuclides, attributable to its long half-life (half life 1⁄4 1:7 × 107 years). However, the negative charge on the basal surface of bentonite particles precludes retention of iodide anions. To render the bentonite effective in retaining hazardous iodide species in DGR, improvement of the anion retention capacity of bentonite becomes imperative. The iodide retention capac-ity of bentonite is improved by admixing 10 and 20% Ag-kaolinite (Ag-K) with bentonite (B) on a dry mass basis. The present study produced Ag-kaolinite by heating silver nitrate-kaolinite mixes at 400°C. Marginal release of iodide retained by Ag-kaolinite occurred under extreme acidic (pH 1⁄4 2:5) and alkaline (pH 1⁄4 12:5) conditions. The swell pressure and iodide etention results of the B-Ag-K specimens bring out that mixing Ag-K with bentonite does not chemically modify the expansive clay; the mixing is physical in nature and Ag-K presence only contributes to iodide retention of the admixture. DOI: 10.1061/(ASCE)HZ.2153-5515.0000121. © 2012 American Society of Civil Engineers.
Resumo:
We present the application of a bismuth modified exfoliated graphite electrode in the detection of arsenic in water. Bismuth film was electrodeposited onto an exfoliated graphite (EG) electrode at a potential of -600 mV. The modification of EG resulted in an increase in the electroactive surface area of the electrode and consequently peak current enhancement in Ru(NH3)(6)(2+/13+) redox probe. Square wave anodic stripping voltammetry was performed with the modified electrode (EG-Bi) in As (III) solutions at the optimum conditions of pH 6, deposition potential of -600 mV and pre-concentration time of 180s. The EG-Bi was able to detect As (III) to the limit of 5 mu g L-1 and was not susceptible to many interfering cations except Cu (II). The EG-Bi is low cost and easy to prepare. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Hydrogen peroxide (H2O2) level in biological samples is used as an important index in various studies. Quantification of H2O2 level in tissue fractions in presence of H2O2 metabolizing enzymes may always provide an incorrect result. A modification is proposed for the spectrofluorimetric determination of H2O2 in homovanillic acid (HVA) oxidation method. The modification was included to precipitate biological samples with cold trichloroacetic acid (TCA, 5% w/v) followed by its neutralization with K2HPO4 before the fluorimetric estimation of H2O2 is performed. TCA was used to precipitate the protein portions contained in the tissue fractions. After employing the above modification, it was observed that H2O2 content in tissue samples was >= 2 fold higher than the content observed in unmodified method. Minimum 2 h incubation of samples in reaction mixture was required for completion of the reaction. The stability of the HVA dimer as reaction product was found to be > 12 h. The method was validated by using known concentrations of H2O2 and catalase enzyme that quenches H2O2 as substrate. This method can be used efficiently to determine more accurate tissue H2O2 level without using internal standard and multiple samples can be processed at a time with additional low cost reagents such as TCA and K2HPO4.
Resumo:
The use of titania nanotubes (TiO2-NT) as the working electrode provides a substantial improvement in the electrochemical detection of proteins. A biosensor designed using this strategy provided a robust method to detect protein samples at very low concentrations (C-protein ca 1 ng/mu l). Reproducible measurements on protein samples at this concentration (I-p,I-a of 80 +/- 1.2 mu A) could be achieved using a sample volume of ca 30 mu l. We demonstrate the feasibility of this strategy for the accurate detection of penicillin binding protein, PBP2a, a marker for methicillin resistant Staphylococcus aureus (MRSA). The selectivity and efficiency of this sensor were also validated using other diverse protein preparations such as a recombinant protein tyrosine phosphatase (PTP10D) and bovine serum albumin (BSA). This electrochemical method also presents a substantial improvement in the time taken (few minutes) when compared to conventional enzyme-linked immunosorbent assay (ELISA) protocols. It is envisaged that this sensor could substantially aid in the rapid diagnosis of bacterial infections in resource strapped environments. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
HU, a widely conserved bacterial histone-like protein, regulates many genes, including those involved in stress response and virulence. Whereas ample data are available on HU-DNA communication, the knowledge on how HU perceives a signal and transmit it to DNA remains limited. In this study, we identify HupB, the HU homolog of the human pathogen Mycobacterium tuberculosis, as a component of serine/threonine protein kinase (STPK) signaling. HupB is extracted in its native state from the exponentially growing cells of M. tuberculosis H37Ra and is shown to be phosphorylated on both serine and threonine residues. The STPKs capable of modifying HupB are determined in vitro and the residues modified by the STPKs are identified for both in vivo and the in vitro proteins through mass spectrometry. Of the identified phosphosites, Thr(65) and Thr(74) in the DNA-embracing beta-strand of the N-terminal domain of HupB (N-HupB) are shown to be crucial for its interaction with DNA. In addition, Arg(55) is also identified as an important residue for N-HupB-DNA interaction. N-HupB is shown to have a diminished interaction with DNA after phosphorylation. Furthermore, hupB is shown to be maximally expressed during the stationary phase in M. tuberculosis H37Ra, while HupB kinases were found to be constitutively expressed (PknE and PknF) or most abundant during the exponential phase (PknB). In conclusion, HupB, a DNA-binding protein, with an ability to modulate chromatin structure is proposed to work in a growth-phase-dependent manner through its phosphorylation carried out by the mycobacterial STPKs.
Resumo:
The effect of Zr, Hf, and Sn in BaTiO3 has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d(33)), with Sn modification exhibiting the highest value similar to 425 pC/N. (C) 2014 AIP Publishing LLC.
Resumo:
Synthesis of amphiphilic, cyclic di- and tetrasaccharides, which incorporate a methylene moiety at the inter-glycosidic bond, is reported. The amphiphilic properties of the new cyclic tetrasaccharide host were identified through assessing the solubilities of guests in aqueous and in organic solvents. The glycosidic bond stability of the cyclic tetrasaccharide under aqueous acidic condition was also verified.
Resumo:
CuIn1-xAlxSe2 (CIAS) thin films were grown on the flexible stainless steel substrates, by de co-sputtering from the elemental cathodes. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport and vacuum evaporation of Se. X-ray diffraction, scanning electron microscopy and UV-visible absorption spectroscopy were used to characterize the selenized films The composition (x=Al/Al+In) with 0 <= x <= 0.65 was varied by substituting Al with indium in CuInSe2. Lattice parameters, average crystallite sizes and compact density of the films compared to CuInSe2, decreased and (112) peak shifted to higher Bragg's angle, with Al incorporation. Cells were fabricated with the device structure SS/Mo/CIAS/CdS/iZno-AZO/Al. Best cell showed the efficiency of 6.8%, with x=0.13, Eg=1.17 eV, fill factor 45.04, short circuit current density J 30 mA/cm(2).