732 resultados para Mineral wool
Resumo:
Burkeite formation is important in saline evaporites and in pipe scales. Burkeite is an anhydrous sulphate-carbonate with an apparent variable anion ratio. Such a formula with two oxyanions lends itself to vibrational spectroscopy. Two symmetric sulphate stretching modes are observed, indicating at least at the molecular level the nonequivalence of the sulphate ions in the burkeite structure. The strong Raman band at 1065 cm−1 is assigned to the carbonate symmetric stretching vibration. The series of Raman bands at 622, 635, 645, and 704 cm−1 are assigned to the ν4 sulphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from T d to C 3v or even C 2v.
Resumo:
The mineral barahonaite is in all probability a member of the smolianinovite group. The mineral is an arsenate mineral formed as a secondary mineral in the oxidized zone of sulphide deposits. We have studied the barahonaite mineral using a combination of Raman and infrared spectroscopy. The mineral is characterized by a series of Raman bands at 863 cm−1 with low wavenumber shoulders at 802 and 828 cm−1. These bands are assigned to the arsenate and hydrogen arsenate stretching vibrations. The infrared spectrum shows a broad spectral profile. Two Raman bands at 506 and 529 cm−1 are assigned to the triply degenerate arsenate bending vibration (F 2, ν4), and the Raman bands at 325, 360, and 399 cm−1 are attributed to the arsenate ν2 bending vibration. Raman and infrared bands in the 2500–3800 cm−1 spectral range are assigned to water and hydroxyl stretching vibrations. The application of Raman spectroscopy to study the structure of barahonaite is better than infrared spectroscopy, probably because of the much higher spatial resolution.
Resumo:
Raman spectra of two well-defined ferrimolybdite samples, Fe23+(Mo6+O4)3·7–8H2O, from the Krupka deposit (northern Bohemia, Czech Republic) and Hůrky near Rakovník occurrence (central Bohemia, Czech Republic) were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of molybdate anions, Fe–O units and water molecules. Number of Raman and infrared bands assigned to (MoO4)2− units and water molecules proved that symmetrically (structurally) nonequivalent (MoO4)2− and H2O are present in the crystal structure of ferrimolybdite. Approximate O–H⋯O hydrogen bond lengths (2.80–2.73 Å) were inferred from the published infrared spectra.
Resumo:
We have studied the mineral kornerupine, a borosilicate mineral, by using a combination of scanning electron microscopy with energy-dispersive analysis and Raman and infrared spectroscopy. Qualitative chemical analysis of kornerupine shows a magnesium–aluminum silicate. Strong Raman bands at 925, 995, and 1051 cm−1 with bands of lesser intensity at 1035 and 1084 cm−1 are assigned to the silicon–oxygen stretching vibrations of the siloxane units. Raman bands at 923 and 947 cm−1 are attributed to the symmetrical stretching vibrations of trigonal boron. Infrared spectra show greater complexity and the infrared bands are more difficult to assign. Two intense Raman bands at 3547 and 3612 cm−1 are assigned to the stretching vibrations of hydroxyl units. The infrared bands are observed at 3544 and 3610 cm−1. Water is also identified in the spectra of kornerupine.
Resumo:
Sidorenkite is a very rare low-temperature hydrothermal mineral, formed very late in the crystallization of hyperagpaitic pegmatites in a differentiated alkalic massif (Mt. Alluaiv, Kola Peninsula, Russia). Sidorenkite Na3Mn(PO4)(CO3) is a phosphate–carbonate of sodium and manganese. Such a formula with two oxyanions lends itself to vibrational spectroscopy. The sharp Raman band at 959 cm−1 and 1012 cm−1 are assigned to the PO43− stretching modes, whilst the Raman bands at 1044 cm−1 and 1074 cm−1 are attributed to the CO32− stretching modes. It is noted that no Raman bands at around 800 cm−1 for sidorenkite were observed. The infrared spectrum of sidorenkite shows a quite intense band at 868 cm−1 with other resolved component bands at 850 and 862 cm−1. These bands are ascribed to the CO32− out-of-plane bend (ν2) bending mode. The series of Raman bands at 622, 635, 645 and 704 cm−1 are assigned to the ν4 phosphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the carbonate anion from D3h or even C2v.
Resumo:
We have studied the mineral Ca(H4B3O7)(OH)⋅4(H2O) or CaB3O3(OH)5⋅4(H2O) using electron microscopy and vibrational spectroscopy. The mineral has been characterized by a range of techniques including X-ray diffraction, thermal analysis, electron microscopy with EDX and vibrational spectroscopy. Electron microscopy shows a pure phase and the chemical analysis shows the presence of calcium only. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. Raman and infrared bands are assigned to the stretching and bending modes of trigonal and tetrahedral boron and the stretching modes of the hydroxyl and water units. By using a combination of techniques we have characterized the borate mineral inyoite.
Resumo:
The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)⋅H2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm−1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm−1. A very sharp band is observed at 3668 cm−1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm−1 are assigned to water stretching vibrations.
Resumo:
We have studied the mineral normandite using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral normandite NaCa(Mn2+,Fe2+)(Ti,Nb,Zr)Si2O7(O,F)2 is a crystalline sodium calcium silicate which contains rare earth elements. Chemical analysis shows the mineral contains a range of elements including Na, Mn2+, Ca, Fe2+ and the rare earth element niobium. No Raman bands are observed above 1100 cm−1. The mineral is characterised by Raman bands observed at 724, 748, 782 and 813 cm−1. Infrared bands are broad; nevertheless bands may be resolved at 723, 860, 910, 958, 933, 1057 and 1073 cm−1. Intense Raman bands at 454, 477 and 513 cm−1 are attributed to OSiO bending modes. No Raman bands are observed in the hydroxyl stretching region, but low intensity infrared bands are observed at 3191 and 3450 cm−1. This observation brings into question the true formula of the mineral.
Resumo:
The mineral ushkovite has been analyzed using a combination of electron microscopy with EDX and vibrational spectroscopy. Chemical analysis shows the mineral contains P, Mg with very minor Fe. Thus, the formula of the studied ushkovite is Mg32+(PO4)2·8H2O. The Raman spectrum shows an intense band at 953 cm−1 assigned to the ν1 symmetric stretching mode. In the infrared spectra complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong infrared bands around 827 cm−1 are attributed to water librational modes. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 2881, 2998, 3107, 3203, 3284 and 3457 cm−1. The wavenumber band at 3457 cm−1 is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH bending modes where a strong infrared band centered around 1653 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH bending bands from strongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. Vibrational spectroscopy enhances our knowledge of the molecular structure of ushkovite.
Resumo:
Tooeleite is an unique ferric arsenite sulfate mineral, which has the potential significance of directly fixing As(III) as mineral trap. The tooeleite and various precipitates were hydrothermally synthesized under the different of initial As(III)/As(V) molar ratios and characterized by XRD, FTIR, XPS and SEM. The crystallinity of tooeleite decreases with the amount of As(V). The precipitate is free of any crystalline tooeleite at the level of that XRD could detect when the ratio of As(III)/As(V) of 7:3 and more. The characteristic bands of tooeleite are observed in 772, 340, 696 and 304 cm−1, which are assigned to the ν1, ν2, ν3 and ν4 vibrations of AsO33−. These intensities of bands gradually decreases with the presence of As(V) and its increasing. An obviously wide band is observed in 830 cm−1, which is the ν1 vibration of AsO4. The result of XPS reveals that the binding energies of As3d increase from 44.0 eV to 45.5 eV, which indicates that the amount of As(V) in the precipitates increases. The concentrations of arsenic released of these precipitates are 350–650 mg/L. The stability of tooeleite decreases by comparison when the presence of coexisting As(V) ions.
Resumo:
We have studied the borate mineral szaibelyite MgBO2(OH) using electron microscopy and vibrational spectroscopy. EDS spectra show a phase composed of Mg with minor amounts of Fe. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1099 cm−1 with a shoulder band at 1093 cm−1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm−1 are attributed to the BOH in-plane bending modes. Raman bands at 836 and 988 cm−1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The infrared bands at 3559 and 3547 cm−1 are assigned to hydroxyl stretching vibrations. Broad infrared bands at 3269 and 3398 cm−1 are assigned to water stretching vibrations. Infrared bands at 1306, 1352, 1391, 1437 cm−1 are assigned to the antisymmetric stretching vibrations of trigonal boron. Vibrational spectroscopy enables aspects of the molecular structure of the borate mineral szaibelyite to be assessed.
Resumo:
The effect of 18 months of training on the ovarian hormone concentrations and bone mineral density (BMD) accrual was assessed longitudinally in 14 adolescent rowers and 10 matched controls, aged 14–15 years. Ovarian hormone levels were assessed by urinary estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) excretion rates, classifying the menstrual cycles as ovulatory or anovulatory. Total body (TB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) (L2–4) bone mass were measured at baseline and 18 months using dual-energy X-ray densitometry. Results were expressed as bone mineral content (BMC), BMD and bone mineral apparent density (BMAD). Five rowers had anovulatory menstrual cycles compared with zero prevalence for the control subjects. Baseline TB BMD was significantly higher in the ovulatory rowers, with PF BMD, FN BMD and LS BMD similar for all groups. At completion, the LS bone accrual of the ovulatory rowers was significantly greater (BMC 8.1%, BMD 6.2%, BMAD 6.2%) than that of the anovulatory rowers (BMC 1.1%, BMD 3.9%, BMAD 1.6%) and ovulatory controls (BMC 0.5%, BMD 1.1%, BMAD 1.1%). No difference in TB, PF or FN bone accrual was observed among groups. This study demonstrated an osteogenic response to mechanical loading, with the rowers accruing greater bone mass than the controls at the lumbar spine. However, the exercise-induced osteogenic benefits were less when rowing training was associated with low estrogen and progesterone metabolite excretion.
Resumo:
BACKGROUND High magnitude loads and unusual loading regimes are two important determinants for increasing bone mass. Past research demonstrated that positive Gz-induced loading, providing high loads in an unaccustomed manner, had an osteogenic effect on bone. Another determinant of bone mass is that the bone response to loading is site specific. This study sought to further investigate the site specific bone response to loading, examining the cervical spine response, the site suspected of experiencing the greatest loading, to high performance flight. METHODS Bone mineral density (BMD) and bone mineral content (BMC) was monitored in 9 RAAF trainee fighter pilots completing an 8-mo flight training course on a PC-9 and 10 age-height-weight-matched controls. RESULTS At completion of the course, the pilots had a significant increase in cervical spine BMD and total body BMC. No significant changes were found for the control group. CONCLUSIONS This study demonstrated that the physical environment associated with flight training may have contributed to a significant increase in cervical spine bone mass in the trainee PC-9 pilots. The increase in bone mass was possibly a response to the strain generated by the daily wearing of helmet and mask assembly under the influence of positive sustained accelerative forces.
Resumo:
The mineral fraipontite has been studied by using a combination of scanning electron microscopy with energy dispersive analysis and vibrational spectroscopy (infrared and Raman). Fraipontite is a member of the 1:1 clay minerals of the kaolinite-serpentine group. The mineral contains Zn and Cu and is of formula (Cu,Zn,Al)3(Si,Al)2O5(OH)4. Qualitative chemical analysis of fraipontite shows an aluminium silicate mineral with amounts of Cu and Zn. This kaolinite type mineral has been characterised by Raman and infrared spectroscopy; in this way aspects about the molecular structure of fraipontite clay are elucidated.
Resumo:
The minerals clinotyrolite and fuxiaotuite are discredited in terms of the mineral tangdanite. The mixed anion mineral tangdanite Ca2Cu9(AsO4)4(SO4)0.5(OH)9 9H2O has been studied using a combination of Raman and infrared spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. These bands are assigned to water and hydroxyl stretching vibrations. Two intense Raman bands at 837 and approximately 734 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. Infrared bands at 1023 cm−1 are assigned to the (SO4)2− ν1 symmetric stretching mode, and infrared bands at 1052, 1110 and 1132 cm−1 assigned to (SO4)2− ν3 antisymmetric stretching modes, confirming the presence of the sulphate anion in the tangdanite structure. Raman bands at 593 and 628 cm−1 are attributed to the (SO4)2− ν4 bending modes. Low-intensity Raman bands found at 457 and 472 cm−1 are assigned to the (AsO4)3− ν2 bending modes. A comparison is made with the previously obtained spectral data on the discredited mineral clinotyrolite.