742 resultados para Migraine Disorders
Resumo:
Nemaline myopathy (NM) is a rare muscle disorder characterised by muscle weakness and nemaline bodies in striated muscle tissue. Nemaline bodies are derived from sarcomeric Z discs and may be detected by light microscopy. The disease can be divided into six subclasses varying from very severe, in some cases lethal forms to milder forms. NM is usually the consequence of a gene mutation and the mode of inheritance varies between NM subclasses and different families. Mutations in six genes are known to cause NM; nebulin (NEB), alpha-actin, alpha-tropomyosin (TPM3), troponin T1, beta-tropomyosin (TPM2) and cofilin 2, of which nebulin and -actin are the most common. One of the main interests of my research is NEB. Nebulin is a giant muscle protein (600-900 kDa) expressed mainly in the thin filaments of striated muscle. Mutations in NEB are the main cause of autosomal recessive NM. The gene consists of 183 exons. Thus being gigantic, NEB is very challenging to investigate. NEB was screened for mutations using denaturing High Performance Liquid Chromatography (dHPLC) and sequencing. DNA samples from 44 families were included in this study, and we found and published 45 different mutations in them. To date, we have identified 115 mutations in NEB in a total of 96 families. In addition, we determined the occurrence in a world-wide sample cohort of a 2.5 kb deletion containing NEB exon 55 identified in the Ashkenazi Jewish population. In order to find the seventh putative NM gene a genome-wide linkage study was performed in a series of Turkish families. In two of these families, we identified a homozygous mutation disrupting the termination signal of the TPM3 gene, a previously known NM-causing gene. This mutation is likely a founder mutation in the Turkish population. In addition, we described a novel recessively inherited distal myopathy, named distal nebulin myopathy, caused by two different homozygous missense mutations in NEB in six Finnish patients. Both mutations, when combined in compound heterozygous form with a more disruptive mutation, are known to cause NM. This study consisted of molecular genetic mutation analyses, light and electron microscopic studies of muscle biopsies, muscle imaging and clinical examination of patients. In these patients the distribution of muscle weakness was different from NM. Nemaline bodies were not detectable with routine light microscopy, and they were inconspicuous or absent even using electron microscopy. No genetic cause was known to underlie cap myopathy, a congenital myopathy characterised by cap-like structures in the muscle fibres, until we identified a deletion of one codon of the TPM2 gene, in a 30-year-old cap myopathy patient. This mutation does not change the reading frame of the gene, but a deletion of one amino acid does affect the conformation of the protein produced. In summary, this thesis describes a novel distal myopathy caused by mutations in the nebulin gene, several novel nebulin mutations associated with nemaline myopathy, the first molecular genetic cause of cap myopathy, i.e. a mutation in the beta-tropomyosin gene, and a founder mutation in the alpha-tropomyosin gene underlying autosomal recessive nemaline myopathy in the Turkish population.
Resumo:
Positional cloning has enabled hypothesis-free, genome-wide scans for genetic factors contributing to disorders or traits. Traditionally linkage analysis has been used to identify regions of interest, followed by meticulous fine mapping and candidate gene screening using association methods and finally sequencing of regions of interest. More recently, genome-wide association analysis has enabled a more direct approach to identify specific genetic variants explaining a part of the variance of the phenotype of interest. Autism spectrum disorders (ASDs) are a group of childhood onset neuropsychiatric disorders with shared core symptoms but varying severity. Although a strong genetic component has been established in ASDs, genetic susceptibility factors have largely eluded characterization. Here, we have utilized modern molecular genetic methods combined with the advantages provided by the special population structure in Finland to identify genetic risk factors for ASDs. The results of this study show that numerous genetic risk factors exist for ASDs even within a population isolate. Stratification based on clinical phenotype resulted in encouraging results, as previously identified linkage to 3p14-p24 was replicated in an independent family set of families with Asperger syndrome, but no other ASDs. Fine-mapping of the previously identified linkage peak for ASDs at 3q25-q27 revealed association between autism and a subunit of the 5-hydroxytryptamine receptor 3C (HTR3C). We also used dense, genome-wide single nucleotide polymorphism (SNP) data to characterize the population structure of Finns. We observed significant population substructure which correlates with the known history of multiple consecutive bottle-necks experienced by the Finnish population. We used this information to ascertain a genetically homogenous subset of autism families to identify possible rare, enriched risk variants using genome-wide SNP data. No rare enriched genetic risk factors were identified in this dataset, although a subset of families could be genealogically linked to form two extended pedigrees. The lack of founder mutations in this isolated population suggests that the majority of genetic risk factors are rare, de novo mutations unique to individual nuclear families. The results of this study are consistent with others in the field. The underlying genetic architecture for this group of disorders appears highly heterogeneous, with common variants accounting for only a subset of genetic risk. The majority of identified risk factors have turned out to be exceedingly rare, and only explain a subset of the genetic risk in the general population in spite of their high penetrance within individual families. The results of this study, together with other results obtained in this field, indicate that family specific linkage, homozygosity mapping and resequencing efforts are needed to identify these rare genetic risk factors.
Resumo:
The clinical overlap between monogenic Familial Hemiplegic Migraine (FHM) and common migraine subtypes, and the fact that all three FHM genes are involved in the transport of ions, suggest that ion transport genes may underlie susceptibility to common forms of migraine. To test this leading hypothesis, we examined common variation in 155 ion transport genes using 5257 single nucleotide polymorphisms (SNPs) in a Finnish sample of 841 unrelated migraine with aura cases and 884 unrelated non-migraine controls. The top signals were then tested for replication in four independent migraine case-control samples from the Netherlands, Germany and Australia, totalling 2835 unrelated migraine cases and 2740 unrelated controls. SNPs within 12 genes (KCNB2, KCNQ3, CLIC5, ATP2C2, CACNA1E, CACNB2, KCNE2, KCNK12, KCNK2, KCNS3, SCN5A and SCN9A) with promising nominal association (0.00041 < P < 0.005) in the Finnish sample were selected for replication. Although no variant remained significant after adjusting for multiple testing nor produced consistent evidence for association across all cohorts, a significant epistatic interaction between KCNB2 SNP rs1431656 (chromosome 8q13.3) and CACNB2 SNP rs7076100 (chromosome 10p12.33) (pointwise P = 0.00002; global P = 0.02) was observed in the Finnish case-control sample. We conclude that common variants of moderate effect size in ion transport genes do not play a major role in susceptibility to common migraine within these European populations, although there is some evidence for epistatic interaction between potassium and calcium channel genes, KCNB2 and CACNB2. Multiple rare variants or trans-regulatory elements of these genes are not ruled out.
Resumo:
Latent class analysis was performed on migraine symptom data collected in a Dutch population sample (N = 12,210, 59% female) in order to obtain empirical groupings of individuals suffering from symptoms of migraine headache. Based on these heritable groupings (h(2) = 0.49, 95% CI: 0.41-0.57) individuals were classified as affected (migrainous headache) or unaffected. Genome-wide linkage analysis was performed using genotype data from 105 families with at least 2 affected siblings. In addition to this primary phenotype, linkage analyses were performed for the individual migraine symptoms. Significance levels, corrected for the analysis of multiple traits, were determined empirically via a novel simulation approach. Suggestive linkage for migrainous headache was found on chromosomes 1 (LOD = 1.63; pointwise P = 0.0031), 13 (LOD = 1.63; P = 0.0031), and 20 (LOD = 1.85; P = 0.0018). Interestingly, the chromosome 1 peak was located close to the ATP1A2 gene, associated with familial hemiplegic migraine type 2 (FHM2). Individual symptom analysis produced a LOD score of 1.97 (P = 0.0013) on chromosome 5 (photo/phonophobia), a LOD score of 2.13 (P = 0.0009) on chromosome 10 (moderate/severe pain intensity) and a near significant LOD score of 3.31 (P = 0.00005) on chromosome 13 (pulsating headache). These peaks were all located near regions previously reported in migraine linkage studies. Our results provide important replication and support for the presence of migraine susceptibility genes within these regions, and further support the utility of an LCA-based phenotyping approach and analysis of individual symptoms in migraine genetic research. Additionally, our novel "2-step" analysis and simulation approach provides a powerful means to investigate linkage to individual trait components.
Resumo:
Latent class and genetic analyses were used to identify subgroups of migraine sufferers in a community sample of 6,265 Australian twins (55% female) aged 25-36 who had completed an interview based on International Headache Society (IHS) criteria. Consistent with prevalence rates from other population-based studies, 703 (20%) female and 250 (9%) male twins satisfied the IHS criteria for migraine without aura (MO), and of these, 432 (13%) female and 166 (6%) male twins satisfied the criteria for migraine with aura (MA) as indicated by visual symptoms. Latent class analysis (LCA) of IHS symptoms identified three major symptomatic classes, representing 1) a mild form of recurrent nonmigrainous headache, 2) a moderately severe form of migraine, typically without visual aura symptoms (although 40% of individuals in this class were positive for aura), and 3) a severe form of migraine typically with visual aura symptoms (although 24% of individuals were negative for aura). Using the LCA classification, many more individuals were considered affected to some degree than when using IHS criteria (35% vs. 13%). Furthermore, genetic model fitting indicated a greater genetic contribution to migraine using the LCA classification (heritability, h(2)=0.40; 95% CI, 0.29-0.46) compared with the IHS classification (h(2)=0.36; 95% CI, 0.22-0.42). Exploratory latent class modeling, fitting up to 10 classes, did not identify classes corresponding to either the IHS MO or MA classification. Our data indicate the existence of a continuum of severity, with MA more severe but not etiologically distinct from MO. In searching for predisposing genes, we should therefore expect to find some genes that may underlie all major recurrent headache subtypes, with modifying genetic or environmental factors that may lead to differential expression of the liability for migraine.
Resumo:
This study examined patients’ preference ratings for receiving support via remote communication to increase their lifestyle physical activity. Methods People with musculoskeletal disorders ( n=221 of 296 eligible) accessing one of three clinics provided preference ratings for “how much” they wanted to receive physical activity support via five potential communication modalities. The five ratings were generated on a horizontal analogue rating scale (0 represented “not at all”; 10 represented “very much”). Results Most (n=155, 70%) desired referral to a physical activity promoting intervention. “Print and post” communications had the highest median preference rating (7/10), followed by email and telephone (both 5/10), text messaging (1/10), and private Internet-based social network messages (0/10). Desire to be referred was associated with higher preference for printed materials (coefficient = 2.739, p<0.001), telephone calls (coefficient = 3.000, p<0.001), and email (coefficient = 2.059, p=0.02). Older age was associated with lower preference for email (coefficient = −0.100, p<0.001), texting (coefficient = −0.096, p<0.001), and social network messages (coefficient = −0.065, p<0.001). Conclusion Patients desiring support to be physically active indicated preferences for interventions with communication via print, email, or telephone calls.
Resumo:
The benefits of physical activity are established and numerous, including improved musculoskeletal health and reduced risk of cardiovascular disease, diabetes, some cancers, and a range of other chronic conditions. While sedentary lifestyles are becoming increasingly prevalent among populations internationally, people with musculoskeletal disorders may face additional challenges to undertaking exercise and physically activities. Unfortunately, interventions in ambulatory hospital clinics for people with musculoskeletal disorders primarily focus on their presenting musculoskeletal complaint with cursory attention given to lifestyle risk factors; including physical inactivity.
Resumo:
- Objective The aim is to identify the role and scope of Accredited Exercise Physiologist (AEP) services in the mental health sector and to provide insight as to how AEPs can contribute to the multidisciplinary mental health team. - Methods A modified Delphi approach was utilised. Thirteen AEPs with experience in mental health contributed to the iterative development of a national consensus statement. Six mental health professionals with expertise in psychiatry, mental health nursing, general practice and mental health research participated in the review process. Reviewers were provided with a template to systematically provide feedback on the language, content, structure and relevance to their professional group. - Results This consensus statement outlines how AEPs can contribute to the multidisciplinary mental health team, the aims and scope of AEP-led interventions in mental health services and examples of such interventions, the range of physical and mental health outcomes possible through AEP-led interventions and common referral pathways to community AEP services. - Outcome AEPs can play a key role in the treatment of individuals experiencing mental illness. The diversity of AEP interventions allows for a holistic approach to care, enhancing both physical and mental health outcomes.
Resumo:
Thesis focuses on mutations of POLG1 gene encoding catalytic subunit polγ-α of mitochondrial DNA polymerase gamma holoenzyme (polG) and the association of mutations with different clinical phenotypes. In addition, particular defective mutant variants of the protein were characterized biochemically in vitro. PolG-holoenzyme is the sole DNA polymerase found in mitochondria. It is involved in replication and repair of the mitochondrial genome, mtDNA. Holoenzyme also includes the accessory subunit polγ-β, which is required for the enhanced processivity of polγ-α. Defective polγ-α causes accumulation of secondary mutations on mtDNA, which leads to a defective oxidative phosphorylation system. The clinical consequences of such mutations are variable, affecting nervous system, skeletal muscles, liver and other post-mitotic tissues. The aims of the studies included: 1) Determination of the role of POLG1 mutations in neurological syndromes with features of mitochondrial dysfunction and an unknown molecular cause. 2) Development and set up of diagnostic tests for routine clinical purposes. 3) Biochemical characterization of the functional consequences of the identified polγ-α variants. Studies describe new neurological phenotypes in addition to PEO caused by POLG1 mutations, including parkinsonism, premature amenorrhea, ataxia and Parkinson s disease (PD). POLG1 mutations and polymorphisms are both common and/or potential genetic risk factors at least among the Finnish population. The major findings and applications reported here are: 1) POLG1 mutations cause parkinsonism and premature menopause in PEO families in either a recessive or a dominant manner. 2) A common recessive POLG1 mutations (A467T and W748S) in the homozygous state causes severe adult or juvenile-onset ataxia without muscular symptoms or histological or mtDNA abnormalities in muscles. 3) A common recessive pathogenic change A467T can also cause a mild dominant disease in heterozygote carriers. 4) The A467T variant shows reduced polymerase activity due to defective template binding. 5) Rare polyglutamine tract length variants of POLG1 are significantly enriched in Finnish idiopathic Parkinson s disease patients. 6) Dominant mutations are clearly restricted to the highly conserved polymerase domain motifs, whereas recessive ones are more evenly distributed along the protein. The present results highlight and confirm the new role of mitochondria in parkinsonism/Parkinson s disease and describe a new mitochondrial ataxia. Based on these results, a POLG1 diagnostic routine has been set up in Helsinki University Central Hospital (HUSLAB).
Resumo:
High quality of platelet analytics requires specialized knowledge and skills. It was applied to analyze platelet activation and aggregation responses in a prospective controlled study of patients with Finnish type of amyloidosis. The 20 patients with AGel amyloidosis displayed a delayed and more profound platelet shape change than healthy siblings and healthy volunteers, which may be related to altered fragmentation of mutated gelsolin during platelet activation. Alterations in platelet shape change have not been reported in association with platelet disorders. In the rare Bernard-Soulier syndrome with Asn45Ser mutation of glycoprotein (GP) IX, the diagnostic defect in the expression of GPIb-IX-V complex was characterized in seven Finnish patients, also an internationally exceptionally large patient series. When measuring thrombopoietin in serial samples of amniotic fluid and cord blood of 15 pregnant women with confirmed or suspected fetal alloimmune thrombocytopenia, the lower limit of detection could be extended. The results approved that thrombopoietin is present already in amniotic fluid. The application of various non-invasive means for diagnosing thrombocytopenia (TP) revealed that techniques for estimating the proportion of young, i.e. large platelets, such as direct measurement of reticulated platelets and the mean platelet size, would be useful for evaluating platelet kinetics in a given patient. Due to different kinetics between thrombopoietin and increase of young platelets in circulation, these measurements may have most predictive value when measured from simultaneous samples. Platelet autoantibodies were present not only in isolated autoimmune TP but also in patients without TP where disappearance of platelets might be compensated by increased production. The autoantibodies may also persist after TP has been cured. Simultaneous demonstration of increased young platelets (or increased mean platelet volume) in peripheral blood and the presence of platelet associated IgG specificities to major glycoproteins (GPIb-IX and GPIIb-IIIa) may be considered diagnostic for autoimmune TP. Measurement of a soluble marker as a sign of thrombin activation and proceeding deterioration of platelet components was applied to analyze the alterations under several stress factors (storage, transportation and lack of continuous shaking under controlled conditions) of platelet products. The GPV measured as a soluble factor in platelet storage medium showed good correlation with an array of other measurements commonly applied in characterization of stored platelets. The benefits of measuring soluble analyte in a quantitative assay were evident.
Resumo:
Migraine is a common disease in children and adolescents, affecting roughly 10% of school-aged children. Recent studies have revealed an increasing incidence of childhood migraine, but migraine remains an underrecognized and undertreated condition in the pediatric population. Migraine attacks are painful and disabling and can affect a child´s life in many ways. Effective drug treatment is usually needed. The new migraine drugs, triptans, were introduced at the beginning of the 1990s and have since been shown to be very effective in the treatment of migraine attacks in adults. Although they are widely used in adults, the acute treatment of migraine in children and adolescents is still based on paracetamol and nonsteroidal anti-inflammatory drugs. Some children can control their attacks satisfactorily with simple analgesics, but at least one-third need more powerful treatments. When this thesis work commenced, hardly any information existed on the efficacy and safety of triptans in children. The study aim of the thesis was to identify more efficient treatments of migraine for children and adolescents by investigating the efficacy of sumatriptan nasal spray and oral rizatriptan compared with placebo in them. Sleep has an impact on migraine in many aspects. Despite the clinical relevance and common manifestation of sleep in the context of migraine in children, very little research data on the true frequency of sleep exist. As sleeping is so often related to childhood migraine, it can be a confounding factor in clinical drug trials of migraine treatments in children and adolescents. How the results of a sleeping child should be analyzed is under continual debate. The aim of the thesis was also to clarify this as well as to evaluate the frequency of sleeping during migraine attacks in children and factors affecting frequency. Both nasal sumatriptan and oral rizatriptan were effective (superior to placebo), and well tolerated in treatment of migraine attacks in children and adolescents aged 8-17 and 6-17 years, respectively. No serous adverse effects were observed. The results of this work suggest that nasal sumatriptan 20 mg and rizatriptan 10 mg can be effectively and safely used to treat migraine attacks in adolescents aged over 12 years if more effective drugs than NSAIDs are needed. No difference was observed in efficacy or safety of nasal sumatriptan and rizatriptan between children aged younger than 12 years and older children, but because the treated number of patients under 12 years is still small, more studies are needed before sumatriptan or rizatriptan can be recommended for use in this population. Sleeping during migraine attacks was very common, and most children at least occasionally slept during an attack. Falling asleep was especially common in children under eight years of age and during the first hour after the onset of attack. Children who were able to sleep soon after attack onset were more likely pain-free at two hours. Sleeping probably both improves recovery from a migraine attack and is a sign of headache relief. Falling asleep should be classified as a sign of headache relief in clinical drug trials when studying migraine treatments in children and adolescents.