946 resultados para Middle and upper Eocene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lower Eocene calcareous nannofossil limestone cored at DSDP Site 612 on the middle slope off New Jersey represents an almost complete biostratigraphic sequence; only the lowest biozone (CP9a; NP10*) was not recovered. The thickness of the strata (198 m), the good preservation of the nannofossils, and the lack of long hiatuses justify the acceptance of this section as a lower Eocene reference for the western North Atlantic margin. The widely recognized and very similar nannofossil zonations of Martini (NP zones) and Bukry-Okada (CP zones) are emended slightly to make their lower Eocene biozones coeval; in addition, five new subzones are erected that subdivide zones CP10 and CPU (NP12 and NP13). Established biozone names are retained as they are altered little in concept, but alphanumeric code systems are changed somewhat by appending an asterisk (*) to identify zones that are emended. Zone CP10* (NP12*) is divided into two parts, the Lophodolithus nascens Subzone (CP10*a; NP12*a) and the Helicosphaera seminulum Subzone (CP10*b; NP12*b). Zone CPU* (NP13*) is divided into three parts, the Helicosphaera lophota Subzone (CP11*a; NP13*a), the Cyclicargolithuspseudogammation Subzone (CP11*b; NP13*b), and the Rhabdosphaera tenuis Subzone (CP11*c; NP13*c). At Site 612, a time-depth curve based on nannofossil datums dated in previous studies reveals a smoothly declining sediment accumulation rate, from 4.9 cm/10**3yr in CP10* (NP12*) to 2.8 cm/103 yr. in CP12* (NP14*). The ages of first-occurrence datums not previously dated are approximated by projection onto this timedepth curve and are as follows: Helicosphaera seminulum, 55.0 Ma; Helicosphaera lophota, 54.5 Ma; Cyclicargolithus pseudogammation, 53.7 Ma; Rhabdosphaera tenuis, 52.6 Ma; and Rhabdosphaera inflata, 50.2 Ma. At nearby Site 613 on the upper rise, strata of similar age, 139 m thick, contain an unconformity representing Subzone CPll*b (NP13*b) and a hiatus of approximately 1.1 m.y. duration. The sediment accumulation rate in the lower part of this section (9.7 cm/10**3yr.) is twice that observed for equivalent strata at Site 612. The hiatus and the heightened sediment accumulation rate at Site 613 probably represent the effects of episodic mass wasting on the early Eocene continental slope and rise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratios in Eocene and Oligocene planktonic and benthic foraminifera have been investigated from Atlantic, Indian, and Pacific Ocean locations. The major changes in Eocene-Oligocene benthic foraminiferal oxygen isotopes were enrichment of up to 1 per mil in 18O associated with the middle/late Eocene boundary and the Eocene/Oligocene boundary at locations which range from 1- to 4-km paleodepth. Although the synchronous Eocene-Oligocene 18O enrichment began in the latest Eocene, most of the change occurred in the earliest Oligocene. The earliest Oligocene enrichment in 18O is always larger in benthic foraminifera than in surface-dwelling planktonic foraminifera, a condition that indicates a combination of deep-water cooling and increased ice volume. Planktonic foraminiferal d18O does not increase across the middle/late Eocene boundary at our one site with the most complete record (Deep Sea Drilling Project Site 363, Walvis Ridge). This pattern suggests that benthic foraminiferal d18O increased 40 m.y. ago because of increased density of deep waters, probably as a result of cooling, although glaciation cannot be ruled out without more data. Stable isotope data are averaged for late Eocene and earliest Oligocene time intervals to evaluate paleoceanographic change. Average d18O of benthic foraminifera increased by 0.64 per mil from the late Eocene to the early Oligocene d18O maximum, whereas the average increase for planktonic foraminifera was 0.52 per mil. This similarity suggests that the Eocene/Oligocene boundary d18O increase was caused primarily by increased continental glaciation, coupled with deep sea cooling by as much as 2°C at some sites. Average d18O of surface-dwelling planktonic foraminifera from 14 upper Eocene and 17 lower Oligocene locations, when plotted versus paleo-latitude, reveals no change in the latitudinal d18O gradient. The Oligocene data are offset by ~0.45 per mil, also believed to reflect increased continental glaciation. At present, there are too few deep sea sequences from high latitude locations to resolve an increase in the oceanic temperature gradient from Eocene to Oligocene time using oxygen isotopes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical analyses of the middle Eocene through lower Oligocene lithologic Unit IIIC (260-518 meters below seafloor [mbsf]) indicate a relatively constant geochemical composition of the detrital fraction throughout this depositional interval at Ocean Drilling Program (ODP) Site 647 in the southern Labrador Sea. The main variability occurs in redox-sensitive elements (e.g., iron, manganese, and phosphorus), which may be related to early diagenetic mobility in anaerobic pore waters during bacterial decomposition of organic matter. Initial preservation of organic matter was mediated by high sedimentation rates (36 m/m.y.). High iron (Fe) and manganese (Mn) contents are associated with carbonate concretions of siderite, manganosiderite, and rhodochrosite. These concretions probably formed in response to elevated pore-water alkalinity and total dissolved carbon dioxide (CO2) concentrations resulting from bacterial sulfate reduction, as indicated by nodule stable-isotope compositions and pore-water geochemistry. These nodules differ from those found in upper Cenozoic hemipelagic sequences in that they are not associated with methanogenesis. Phosphate minerals (carbonate-fluorapatite) precipitated in some intervals, probably as the result of desorption of phosphorus from iron and manganese during reduction. The bulk chemical composition of the sediments differs little from that of North Atlantic Quaternary abyssal red clays, but may contain a minor hydrothermal component. The silicon/ aluminum (Si/Al) ratio, however, is high and variable and probably reflects original variations in biogenic opal, much of which is now altered to smectite and/or opal CT. An increase in the sodium/potassium (Na/K) ratio in the upper Eocene corresponds to the beginning of coarsergrained feldspar flux to the site, possibly marking the onset of more vigorous deep currents. Although the Site 647 cores provide a nearly complete high-resolution, high-latitude Eocene-Oligocene record, the high sedimentation rate and somewhat unusual diagenetic conditions have led to variable alteration of benthic foraminifers and fine-fraction carbonate and have overprinted the original stable-isotope records. Planktonic foraminifers are less altered, but on the whole, there is little chance of sorting out the nature and timing of environmental change on the basis of our stable-isotope analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five species of Bolboforma have been found in middle Eocene to lower Oligocene sediments from Maud Rise, Weddel Sea, Antarctica (Leg 113, Holes 689B and 690B), the first reported Bolboforma from the Antarctic Paleogene. The previous oldest known occurrences of Bolboforma in the world's oceans were of late Eocene age and this study extends the known range to the middle middle Eocene (~ 44 Ma). Highest species diversity of Bolboforma in the Weddell Sea region of Antarctica occurred during the late Eocene, after which all but one important species disappeared before the Eocene/Oligocene boundary (36.5 Ma). The remaining species, B. irregularis, disappeared soon after, during the earliest Oligocene. The disappearance of Bolboforma in this region of Antarctica coincided with significant climatic cooling that occurred at the end of the Eocene and during the earliest Oligocene, when subpolar replaced temperate conditions. Bolboforma is not known from younger sediments in the Antarctic except for a brief interval during the late early Miocene, an interval of Neogene climatic warmth. The presence of Bolboforma in Eocene to lower Oligocene sequences in the Weddell Sea region of Antarctica is therefore consistent with this taxon's previously recognized association with temperate water masses. Bolboforma is of limited biostratigraphic value at present, because of relatively long stratigraphic ranges and diachronous extinctions. Previous suggestions that Bolboforma represents an encystment stage of phytoplankton require further critical study because the deposition, in large numbers, at paleodepths up to 2250 m in the open ocean, is an unlikely strategy for an encystment phase of a phytoplanktonic organism. A new species, Bolboforma antarctica, is described, exhibiting a stratigraphic range from middle middle Eocene to the upper Eocene (~ 44 to 39 Ma).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Maestrichtian to late Eocene bathyal benthic foraminiferal faunas at Sites 752,753, and 754 on Broken Ridge in the eastern Indian Ocean were analyzed as to their stratigraphic distribution of species to clarify the relation between faunal turnovers and paleoceanographic changes. Based on Q-mode factor analysis, eight varimax assemblages were distinguished: the Stensioina beccariiformis assemblage in the upper Maestrichtian to upper Paleocene; the Cibicidoides hyphalus assemblage in the upper Maestrichtian; the Cibicidoides cf. pseudoperlucidus assemblage in the upper Paleocene; the Anomalinoides capitatusldanicus assemblage in the uppermost Paleocene to lower Eocene; the Cibicidoides subspiratus assemblage in the lower Eocene; the Nuttallides truempyi assemblage in the lower and middle Eocene; the Osangularia sp. 1 - Hanzawaia ammophila assemblage in the upper Eocene; and the Lenticulina spp. assemblage in the uppermost Eocene, Oligocene, and lower Miocene. The presence of the Osangularia sp. 1 - Hanzawaia ammophila assemblage is related to the shallowing episode on Broken Ridge (upper bathyal), as a result of the rifting event that occurred in the middle Eocene. The most distinct faunal change (the disappearance of about 37% of the species) occurred between the S. beccariiformis assemblage and the A. capitatusldanicus assemblage, at the end of the upper Paleocene. A. capitatusldanicus, Lenticulina spp., and varied forms of Cibicidoides replaced the Velasco-type fauna at this time. The timing of this event is well correlated with the known age at South Atlantic sites (Thomas, 1990 doi:10.2973/odp.proc.sr.113.123.1990; Kennett and Stott, 1990 doi:10.2973/odp.proc.sr.113.188.1990; Katz and Miller, 1990 doi:10.2973/odp.proc.sr.114.147.1991). The primary cause of the extinction of the Stensioina beccariiformis assemblage is elusive, but may have resulted from the cessation of deep-water formation in the Antarctic (Katz and Miller, 1990), and subsequent arrival of warm saline deep water (Thomas, 1990; Kennett and Stott, 1990). Another possibility may be a weakened influence of high-salinity water formed at the low latitudes such as the Tethys Sea. The extinction event corresponds to the change from higher delta13C values in benthic foraminifers to lower ones. An interpretation of delta13C values is that the eastern Indian deep water, characterized by young and nutrient-depleted water, became old water which was devoid of a supply of new water during the latest Paleocene to early Eocene. Prior to this benthic event, signals of related faunal change were detected in the following short periods: early and late Paleocene, near the boundary of nannofossil Zone CP4, and Zone CP5 of the late Paleocene at Site 752. Among common taxa in the upper Maestrichtian, only seven species disappeared or became extinct at the Cretaceous/ Tertiary boundary at Site 752. The benthic foraminiferal population did not change for up to 2 m above the boundary, in contrast to the rapid decrease of the plankt onic foraminiferal population at the boundary. A decrease in the number of benthic foraminifers occurs after that level, corresponding to an interval of decreased numbers of planktonic foraminifers and higher abundance of volcanic ash. Reduced species diversity (H') suggests a secondary effect attributable to the dissolution of foraminiferal tests. The different responses of planktonic and benthic foraminifers to the event just above the boundary suggest that the Cretaceous/Tertiary event was a surface event as also suggested by Thomas (1990). In addition, a positive shift of delta13C in benthic foraminifers after the event indicates nutrient-depleted bottom water at Site 752.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous workers identified a magnetically anomalous clay layer deposited on the northern United States Atlantic Coastal Plain during the Paleocene-Eocene thermal maximum (PETM). The finding inspired the highly controversial hypothesis that a cometary impact triggered the PETM. Here we present ferromagnetic resonance (FMR), isothermal and anhysteretic remanent magnetization, first-order reversal curve, and transmission electron microscopy analyses of late Paleocene and early Eocene sediments in drill core from Ancora, New Jersey. A novel paleogeographic analysis applying a recent paleomagnetic pole from the Faeroe Islands indicates that New Jersey during the initial Eocene had a ~6°-9° lower paleolatitude (~27.3° for Ancora) and a more zonal shoreline trace than in conventional reconstructions. Our investigations of the PETM clay from Ancora reveal abundant magnetite nanoparticles bearing signature traits of crystals produced by magnetotactic bacteria. This result, the first identification of ancient biogenic magnetite using FMR, argues that the anomalous magnetic properties of the PETM sediments are not produced by an impact. They instead reflect environmental changes along the eastern margin of North America during the PETM that led to enhanced production and/or preservation of magnetofossils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, we construct a robust astronomically calibrated age model for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the Middle Eocene Climate Optimum and the Eocene/Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new time scale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and -U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently we applied orbital tuning of the records to the La2011 orbital solution. The resulting new time scale revises and refines the existing orbitally tuned age model and the Geomagnetic Polarity Time Scale from 31 to 43 Ma. Our newly defined absolute age for the Eocene/Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano (Italy) global stratotype section and point. Our compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during very long eccentricity cycle minima around 35.5 Ma, 38.3 Ma and 40.1 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was designed to evaluate the correlation between computed tomography findings and data from the physical examination and the Friedman Staging System (FSS) in patients with obstructive sleep apnea (OSA). We performed a retrospective evaluation by reviewing the medical records of 33 patients (19 male and 14 female patients) with a mean body mass index of 30.38 kg/m(2) and mean age of 49.35 years. Among these patients, 14 presented with severe OSA, 7 had moderate OSA, 7 had mild OSA, and 5 were healthy. The patients were divided into 2 groups according to the FSS: Group A comprised patients with FSS stage I or II, and group B comprised patients with FSS stage III. By use of the Fisher exact test, a positive relationship between the FSS stage and apnea-hypopnea index (P = .011) and between the FSS stage and body mass index (P = .012) was found. There was no correlation between age (P = .55) and gender (P = .53) with the FSS stage. The analysis of variance test comparing the upper airway volume between the 2 groups showed P = .018. In this sample the FSS and upper airway volume showed an inverse correlation and were useful in analyzing the mechanisms of airway collapse in patients with OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Upper Limestone Member of the Corones Formation of the Spanish Pyrenees consists of various units (Lower and Upper Foraminifera Units, Shale Unit, Cherty-ostracode Unit, Ostracode Unit and Chara-ostracode Unit) and offers strong facies and lateral thickness (20 to 80 m) variations. Detailed facies analyses, fifth-order cycles and organic geochemical determinations in the central domain of the Corones platform carbonates (Cherty-ostracode Unit), lower Eocene in age, were carried out to establish a case of close relationship between variations in organic matter productivity and cyclicity with annual period. The Cherty-ostracode Unit displays a continuous and pervasive fifth-order cyclicity, represented by 5 cycles. Each cycle consists of a lower part (mollusc facies) and an upper part (laminated ostracode facies). The calculated fifth-order cycle period ranges from about 17,000 to 28,000 years, which falls within the Milankovitch Band. Variations in organic matter content related to these carbonate cycles have been established. The lower mollusc facies members show a low organic carbon content and Hydrogen Index (HI) below 0.6% in weight and 261, respectively. By contrast, the upper laminated ostracode facies members show high organic carbon contents (up to 2% in weight) and high HI (between 164 and 373), and are also characterized by important silicification processes (the content in chert is up to 30%). The organic geochemistry resulting from these organic rich levels reflects a contribution of algal marine input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At various times during the Quaternary, north-eastern England was a zone of confluence between dynamic ice lobes sourced from the Pennines, northern Scotland, the Cheviots, and Scandinavia. The region thus has some of the most complex exposures of Middle to Late Pleistocene sediments in Britain, with both interglacial and glacial sediments deposited in terrestrial and marine settings. We investigated sedimentary sequences exposed on the coastline of County Durham at Warren House Gill, and present a new model of British and Fennoscandian Ice Sheet interaction in the North Sea Basin during the Middle Pleistocene. The stratigraphy at Warren House Gill consists of a lower diamicton and upper estuarine sediments, both part of the Warren House Formation. They are separated from the overlying Weichselian Blackhall and Horden tills by a substantial unconformity. The lower diamicton of the Warren House Formation is re-interpreted here as an MIS 8 to 12 glaciomarine deposit containing ice-rafted lithics from north-eastern Scotland and the northeast North Sea, and is renamed the ‘Ash Gill Member’. It is dated by lithological comparison to the Easington Raised Beach, Middle Pleistocene Amino Acid Racemisation values, and indirectly by optically stimulated luminescence. The overlying shallow subaqueous sediments were deposited in an estuarine environment by suspension settling and bottom current activity. They are named the ‘Whitesides Member’, and form the uppermost member of the Warren House Formation. During glaciation, ice-rafted material was deposited in a marine embayment. There is no evidence of a grounded, onshore Scandinavian ice sheet in County Durham during MIS 6, which has long been held as the accepted stratigraphy. This has major implications for the currently accepted British Quaternary Stratigraphy. Combined with recent work on the Middle Pleistocene North Sea Drift from Norfolk, which is now suggested to have been deposited by a Scottish ice sheet, the presence of a Scandinavian ice sheet in eastern England at any time during the Quaternary is becoming increasingly doubtful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of thin-section studies of cuttings and a core from two wells in the Amapa Formation of the Foz do Amazonas Basin, five main microfacies have been recognized within three stratigraphic sequences deposited during the Late Paleocene to Early Eocene. The facies are: 1) Ranikothalia grainstone to packstone facies; 2) ooidal grainstone to packstone facies; 3) larger foraminiferal and red algal grainstone to packstone facies; 4) Amphistegina and Helicostegina packstone facies; and 5) green algal and small benthic foraminiferal grainstone to packstone facies, divisible locally into a green algal and the miliolid foraminiferal subfacies and a green algal and small rotaliine foraminiferal subfacies. The lowermost sequence (Si) was deposited in the Late Paleocene-Early Eocene (biozone LF1, equivalent to P3-P6?) and includes rudaceous grainstones and packstones with large specimens of Ranikothalia bermudezi representative of the mid- and inner ramp. The intermediate and uppermost sequences (S2 and S3) display well-developed lowstand deposits formed at the end of the Late Paleocene (upper biozone LF1) and beginning of the Early Eocene (biozone LF2) on the inner ramp (larger foraminiferal and red algal grainstone to packstone facies), in lagoons (green algal and small benthic foraminiferal facies) and as shoals (ooidal facies) or banks (Amphistegina and Helicostegina facies). Depth and oceanic influence were the main controls on the distribution of these microfacies. Stratal stacking patterns evident within these sequences may well have been related to sea level changes postulated for the Late Paleocene and Early Eocene. During this time, the Amapa Formation was dominated by cyclic sedimentation on a gently sloping ramp. Environmental and ecological stress brought about by sea level change at the end of the biozone LF1 led to the extinction of the larger foraminifera (Ranikothalia bermudezi). (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Eifel volcanism is part of the Central European Volcanic Province (CEVP) and is located in the Rhenish Massif, close to the Rhine and Leine Grabens. The Quaternary Eifel volcanism appears to be related to a mantle plume activity. However, the causes of the Tertiary Hocheifel volcanism remain debated. We present geochronological, geochemical and isotope data to assess the geotectonic settings of the Tertiary Eifel volcanism. Based on 40Ar/39Ar dating, we were able to identify two periods in the Hocheifel activity: from 43.6 to 39.0 Ma and from 37.5 to 35.0 Ma. We also show that the pre-rifting volcanism in the northernmost Upper Rhine Graben (59 to 47 Ma) closely precede the Hocheifel volcanic activity. In addition, the volcanism propagates from south to north within the older phase of the Hocheifel activity. At the time of Hocheifel volcanism, the tectonic activity in the Hocheifel was controlled by stress field conditions identical to those of the Upper Rhine Graben. Therefore, magma generation in the Hocheifel appears to be caused by decompression due to Middle to Late Eocene extension. Our geochemical data indicate that the Hocheifel magmas were produced by partial melting of a garnet peridotite at 75-90 km depth. We also show that crustal contamination is minor although the magmas erupted through a relatively thick continental lithosphere. Sr, Nd and Pb isotopic compositions suggest that the source of the Hocheifel magmas is a mixing between depleted FOZO or HIMU-like material and enriched EM2-like material. The Tertiary Hocheifel and the Quaternary Eifel lavas appear to have a common enriched end-member. However, the other sources are likely to be distinct. In addition, the Hocheifel lavas share a depleted component with the other Tertiary CEVP lavas. Although the Tertiary Hocheifel and the Quaternary Eifel lavas appear to originate from different sources, the potential involvement of a FOZO-like component would indicate the contribution of deep mantle material. Thus, on the basis of the geochemical and isotope data, we cannot rule out the involvement of plume-type material in the Hocheifel magmas. The Ko’olau Scientific Drilling Project (KSDP) has been initiated in order to evaluate the long-term evolution of Ko’olau volcano and obtain information about the Hawaiian mantle plume. High precision Pb triple spike data, as well as Sr and Nd isotope data on KSDP lavas and Honolulu Volcanics (HVS) reveal compositional source variations during Ko’olau growth. Pb isotopic compositions indicate that, at least, three Pb end-members are present in Ko’olau lavas. Changes in the contributions of each component are recorded in the Pb, Sr and Nd isotopes stratigraphy. The radiogenic component is present, at variable proportion, in all three stages of Ko’olau growth. It shows affinities with the least radiogenic “Kea-lo8” lavas present in Mauna Kea. The first unradiogenic component was present in the main-shield stage of Ko’olau growth but its contribution decreased with time. It has EM1 type characteristics and corresponds to the “Ko’olau” component of Hawaiian mantle plume. The second unradiogenic end-member, so far only sampled by Honololu lavas, has isotopic characteristics similar to those of a depleted mantle. However, they are different from those of the recent Pacific lithosphere (EPR MORB) indicating that the HVS are not derived from MORB-related source. We suggest, instead, that the HVS result from melting of a plume material. Thus the evolution of a single Hawaiian volcano records the geochemical and isotopic changes within the Hawaiian plume.