950 resultados para Meteorology, Agricultural.
Resumo:
Traditional agricultural systems are threatened world-wide mainly due to the introduction of modern agricultural techniques and the emigration of farm labourers from remote rural villages. The objective of the programme 'Globally Important Agricultural Heritage Systems' (GIAHS), initiated by the Food and Agriculture Organization (FAO) of the United Nations in 2002, is dynamic conservation of traditional agricultural systems. This article addresses the definition and content of agricultural heritage systems and discusses conservation options in the light of developing rural tourism. An explorative survey was conducted in Longxian village, situated in Zhejiang Province, southern China, focusing on the tourism potential of a typical Rice-Fish Agricultural System. The identification of heritage resources is a first step in the process of transforming an agricultural landscape into a cultural tourism landscape. However, the future of these landscapes is in the hands of a range of stakeholders and depends on their capacity to manage, in a sustainable way, tourism development strategies alongside conservation policies.
Resumo:
Since reform and opening up, how much contribution has China's implementation of new agricultural policy made to agricultural output? This paper is trying to establish an agricultural policy output econometric model for doing a quantitative analysis of China's new agricultural policy. The results show that China's agricultural policies on agricultural output have an average contribution rate of about 7% since 1978, which is consistent with the OECD's basic forecast. There are obvious temporal and spatial differences. Generally speaking, we can divide the contribution of agricultural policy into three periods, which are the start-up phase from 1978 to 1991 (14 years), the stationary phase from 1992 to 2002 (11 years) and the rising phase from 2003 to 2008 (6 years). In space, the contribution of agricultural policy underwent a process from the all-low in the start-up phase, the gradual increase in the stationary phase to the all-high in the rising phase. Northern and western regions are more sensitive to policies. There are three major factors that can affect the contribution of regional agricultural policies, which are the process of national industrialization strategy, terrain and the level of local finance.
Resumo:
This article assesses the impact of environmental non-tariff measures on China's agricultural exports. It uses two measures to show which countries make most intensive use of environmental non-tariff measures and which agricultural products exported by China are the most affected. Environmental non-tariff measures were most prevalence in Malaysia, Vietnam, Philippines, Mexico, Japan, Russian, USA, Germany, and Netherland. Labor-intensive agricultural products, such as fish, vegetables, and fruit were most seriously affected.
Resumo:
The distribution and mobility of heavy metals in the paddy soils surrounding a copper smelting plant in south China was investigated. We assessed the degree of metal contamination using an index of geoaccumulation. The metals were divided into two groups: (1) Cu, Zn, Pb and Cd, whose concentrations were heavily affected by anthropogenic inputs, and (2) Ni, Co and Cr, which were mainly of geochemical origin. Concentrations of Cu, Cd, Zn, and Pb in the polluted soils were higher than the Chinese soil quality criteria. The chemical partitioning patterns of Pb, Zn and Cu indicated that Pb was largely associated with the residual and NH2OH HCl extractable fractions. In contrast, Cd was predominantly associated with the MgCl2 extractable fraction. A large proportion of Cu was bound to the acidic H2O2 extractable fractions, while Zn was predominantly found in the residual phase. The fraction of mobile species, which potentially is the most harmful to the environment, was found to be elevated compared to unpolluted soils in which heavy metals are more strongly bound to the matrix. The mobility of the metals was studied by water extraction using a modification of Tessier's procedure, and the order of mobility was Zn > Cd > Cu > Ce > Pb.
Resumo:
We monitored UVA, UVB, and solar radiation from August 2001 to 2003 on the northern Qinghai-Tibetan Plateau to characterize the diurnal and seasonal variations of UV radiation on the world's highest plateau. Daily UVB radiation and the ratio of UVB to total solar radiation increased significantly when the atmospheric ozone concentration decreased as estimated by the total ozone mapping spectrometer (TOMS), as well as when cloud coverage decreased. The UVB/UVA ratio also showed a significant increase when the TOMS ozone concentration decreased in the morning. The seasonal variation pattern of UVB, however, was closely correlated with solar elevation but was little affected by the seasonal pattern of the atmospheric ozone amount. Compared to observations from the central plateau, the magnitude of the UVB increase attributed to ozone depletion was smaller at the northern edge. The study suggests that the temporal variation of ground UV radiation is determined by both solar elevation and the ozone amount, but the spatial difference on the plateau is likely to be ascribed mainly to the spatial variation of the ozone amount. (c) 2007 Published by Elsevier B.V.
Resumo:
In this study, we conducted eddy covariance (EC) measurements of water vapor exchange over a typical steppe in a semi-arid area of the Inner Mongolia Plateau, China. Measurement sites were located within a 25-year-old enclosure with a relatively low leaf area index (similar to 1. 5 m(2) m(-2)) and dominated by Leymus chinensis. Energy balance closure was (H + LE) = 17.09 + 0.69 x (Rn - G) (W/m(2); r(2) = 0.95, n = 6596). Precipitation during the two growing seasons of the study period was similar to the long-term average. The peak evapotranspiration in 2004 was 4 mm d(-1), and 3.5 mm d(-1) in 2003. The maximum latent heat flux was higher than the sensible heat flux, and the sensible heat flux dominated the energy budget at midday during the entire growing season in 2003; latent heat flux was the main consumption component for net radiation during the 2004 growing season. During periods of frozen soil in 2003 and 2004, the sensible heat flux was the primary consumption component for net radiation. The soil heat flux component was similar in 2003 and 2004. The decoupling coefficient (between 0.5 and 0.1) indicates that evapotranspiration was strongly controlled by saturation water vapor pressure deficit (VPD) in this grassland. The results of this research suggest that energy exchange and evapotranspiration were controlled by the phenology of the vegetation and soil water content. In addition, the amount and frequency of rainfall significantly affect energy exchange and evapotranspiration upon the Inner Mongolia plateau. (c) 2007 Published by Elsevier B.V.
Resumo:
Uptake and release of carbon in grassland ecosystems is very critical to the global carbon balance and carbon storage. In this study, the dynamics of net ecosystem CO2 exchange (FNEE) of two grassland ecosystems were observed continuously using the eddy covariance technique during the growing season of 2003. One is the alpine shrub on the Tibet Plateau, and the other is the sem-arid Leymus chinensis steppe in Inner Mongolia of China. It was found that the FNEE of both ecosystems was significantly depressed under high solar radiation. Comprehensive analysis indicates that the depression of FNEE in the L. chinensis steppe was the results of decreased plant photosynthesis and increased ecosystem respiration (R-eco) under high temperature. Soil water stress in addition to the high atmospheric demand under the strong radiation was the primary factor limiting the stomatal conductance. In contrast, the depression of FNEE in the alpine shrub was closely related to the effects of temperature on both photosynthesis and ecosystem respiration, coupled with the reduction of plant photosynthesis due to partial stomatal closure under high temperature at mid-day. The R,c of the alpine shrub was sensitive to soil temperature during high turbulence (u* > 0.2 m s(-1)) but its FNEE decreased markedly when the temperature was higher than the optimal value of about 12 degrees C. Such low optimal temperature contrasted the optimal value (about 20 degrees C) for the steppe, and was likely due to the acclimation of most alpine plants to the long-term low temperature on the Tibet Plateau. We inferred that water stress was the primary factor causing depression of the FNEE in the semi-arid steppe ecosystem, while relative high temperature under strong solar radiation was the main reason for the decrease of FNEE in the alpine shrub. This study implies that different grassland ecosystems may respond differently to climate change in the future. (c) 2006 Elsevier B.V All rights reserved.