996 resultados para Metal recovery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of mono(eta(5)-cyclopentadienyl)metal-(II) complexes with nitro-substituted thienyl acetylide ligands of general formula [M(eta(5)-C5H5)(L)(C C{C4H2S}(n)NO2)] (M = Fe, L = kappa(2)-DPPE, n = 1,2; M = Ru, L = kappa(2)-DPPE, 2 PPh3, n = 1, 2; M = Ni, L = PPh3, n = 1, 2) has been synthesized and fully characterized by NMR, FT-IR, and UV-Vis spectroscopy. The electrochemical behavior of the complexes was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at 1500 nm. The effect of donor abilities of different organometallic fragments on the quadratic hyperpolarizabilities was studied and correlated with spectroscopic and electrochemical data. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were employed to get a better understanding of the second-order nonlinear optical properties in these complexes. In this series, the complexity of the push pull systems is revealed; even so, several trends in the second-order hyperpolarizability can still be recognized. In particular, the overall data seem to indicate that the existence of other electronic transitions in addition to the main MLCT clearly controls the effectiveness of the organometallic donor ability on the second-order NLO properties of these push pull systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns recent advances (since 2005) in the oxidative functionalization of alkanes, alkenes and ketones, under mild conditions, catalyzed by homoscorpionate tris(pyrazol-1-yl)methane metal complexes. The main types of such homogeneous or supported catalysts are classified, and the critical analysis of the most efficient catalytic systems in the different reactions is presented. These reactions include the mild oxidation of alkanes (typically cyclohexane as a model substrate) with hydrogen peroxide (into alkyl hydroperoxides, alcohols, and ketones), the hydrocarboxylation of gaseous alkanes (with carbon monoxide and potassium peroxodisulfate) into the corresponding Cn+1 carboxylic acids, as well as the epoxidation of alkenes and the Baeyer-Villiger oxidation of linear and cyclic ketones with hydrogen peroxide into the corresponding esters and lactones. Effects of various reaction parameters are highlighted and the preferable requirements for a prospective homogeneous or supported C-scorpionate-M-based catalyst in oxidative transformations of those substrates are identified. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted for obtainment of the Master’s Degree in Biotechnology, by the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toluene hydrogenation was studied over catalysts based on Pt supported on large pore zeolites (HUSY and HBEA) with different metal/acid ratios. Acidity of zeolites was assessed by pyridine adsorption followed by FTIR showing only small changes before and after Pt introduction. Metal dispersion was determined by H2–O2 titration and verified by a linear correlation with the intensity of Pt0–CO band obtained by in situ FTIR. It was also observed that the electronic properties of Pt0 clusters were similar for the different catalysts. Catalytic tests showed rapid catalyst deactivation with an activity loss of 80–95% after 60 min of reaction. The turnover frequency of fresh catalysts depended both on metal dispersion and the support. For the same support, it changed by a 1.7-fold (HBEA) and 4.0-fold (HUSY) showing that toluene hydrogenation is structure-sensitive, i.e. hydrogenating activity is not a unique function of accessible metal. This was proposed to be due to the contribution to the overall activity of the hydrogenation of adsorbed toluene on acid sites via hydrogen spillover. Taking into account the role of zeolite acidity, the catalysts series were compared by the activity per total adsorbing sites which was observed to increase steadily with nPt/(nPt + nA). An increase of the accessible Pt atoms leads to an increase on the amount of spilled over hydrogen available in acid sites therefore increasing the overall activity. Pt/HBEA catalysts were found to be more active per total adsorbing site than Pt/HUSY which is proposed to be due to an augmentation in the efficiency of spilled over hydrogen diffusion related to the proximity between Pt clusters and acid sites. The intervention of Lewis acid sites in a greater extent than that measured by pyridine adsorption may also contribute to this higher activity of Pt/HBEA catalysts. These results reinforce the importance of model reactions as a closer perspective to the relevant catalyst properties in reaction conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated chemical-biological effects monitoring was performed in 2010 and 2012 in two NW Iberian estuaries under different anthropogenic pressure. One is low impacted and the other is contaminated by metals. The aim was to verify the usefulness of a multibiomarker approach, using Carcinus maenas as bioindicator species, to reflect diminishing environmental contamination and improved health status under abiotic variation. Sampling sites were assessed for metal levels in sediments and C. maenas, water abiotic factors and biomarkers (neurotoxicity, energy metabolism, biotransformation, anti-oxidant defences, oxidative damage). High inter-annual and seasonal abiotic variation was observed. Metal levels in sediments and crab tissues were markedly higher in 2010 than in 2012 in the contaminated estuary. Biomarkers indicated differences between the study sites and seasons and an improvement of effects measured in C. maenas from the polluted estuary in 2012. Integrated Biomarker Response (IBR) index depicted sites with higher stress levels whereas Principal Component Analysis (PCA) showed associations between biomarker responses and environmental variables. The multibiomarker approach and integrated assessments proved to be useful to the early diagnosis of remediation measures in impacted sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwateralga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells wereexposed to three nominal concentrations of each metal: low (closed to 72 h-EC10values), intermediate(closed to 72 h-EC50values) and high (upper than 72 h-EC90values). The exposure to low metal concen-trations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations anincrease of cell volume was observed; this effect was particularly notorious for Cd and less pronouncedfor Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations ofmetals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an oppositeeffect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases inP. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus;and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrationsresulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after thesecond nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). Thedifferent impact of metals on algal cell volume and cell-cycle progression, suggests that different toxic-ity mechanisms underlie the action of different metals studied. The simultaneous nucleus staining andcell image analysis, used in the present work, can be a useful tool in the analysis of the toxicity of thepollutants, in P. subcapitata, and help in the elucidation of their different modes of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain a PhD degree in Biochemistry at Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Febs Journal (2009)276:1776-1786

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta dissertação pretendeu-se estudar a viabilidade do uso de eletrodiálise com membranas bipolares (BM) na recuperação de ácido clorídrico e de hidróxido de sódio a partir de um efluente industrial que contém 1.4 mol/L de cloreto de sódio. Estas membranas mostraram ser uma ferramenta eficiente para a produção de ácidos e bases a partir do respetivo sal. Foi feita uma seleção de diferentes membranas bipolares (Neosepta, Fumatech e PCA) e aniónicas (PC-SA e PC-ACID 60) na tentativa de encontrar a combinação mais adequada para o tratamento do efluente. Dependendo do critério, o melhor arranjo de membranas é o uso de PC-ACID 60 (membrana aniónica), PC-SK (membrana catiónica) e membranas bipolares do tipo Neosepta para maior pureza dos produtos; membranas bipolares Fumatech para maior eficiência de dessalinização e membranas bipolares PCA para um maior grau de dessalinização. Tecnologicamente foi possível obter uma dessalinização de 99.8% em quatro horas de funcionamento em modo batch com recirculação de todas as correntes. Independentemente da combinação usada é recomendável que o processo seja parado quando a densidade de corrente deixa de ser máxima, 781 A/m2. Assim é possível evitar o aumento de impurezas nos produtos, contra difusão, descida instantânea do pH e uma dessalinização pouco eficiente. A nível piloto o principal fornecedor de membranas e unidade de tratamento “stack” é a marca alemã PCA. Sendo assim realizaram-se ensaios de repetibilidade, contra difusão, avaliação económica e upscaling utilizando as membranas bipolares PCA. A nível económico estudou-se o uso de dois tipos de unidades de tratamento; EDQ 380 e EDQ 1600, para diferentes níveis de dessalinização (50, 75 e 80%). Tendo em conta a otimização económica, é recomendável uma dessalinização máxima de 80%, uma vez que a eficiência de processo a este ponto é de 40%. A aplicação do método com a unidade EDQ 1600 para uma dessalinização de 50% é a mais vantajosa economicamente, com custos de 16 €/m3 de efluente tratado ou 0,78 €/kg Cl- removido. O número de unidades necessárias é 4 posicionados em série.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Estudos sobre as Mulheres