948 resultados para Merluccius, Nasello, feeding, stomaci, morphological, molecular
Resumo:
The first quantitative analysis of phylogenetic relationships of green lacewings (Chrysopidae) is presented based on DNA sequence data. A single nuclear and two mitochondrial genes are used in the analysis: carbomoylphosphate synthase (CPS) domain of carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) (i.e. rudimentary locus), large subunit ribosomal gene (16S) and cytochrome oxidase I (COI). This study represents the first use of the CAD gene to investigate phylogenetic relationships of the lacewings. DNA sequences for 33 chrysopid species from 18 genera, representing all subfamilies and tribes, were compared with outgroups sampled from families Hemerobiidae, Osmylidae and Polystoechotidae. Parsimony analyses of the combined data set recovered all of the previously established subfamilial and tribal groups as monophyletic clades (although relatively weakly supported) except Apochrysinae sensu lato. The enigmatic Nothancyla verreauxi Navas has historically been difficult to place in a subfamily group based on morphological characteristics; molecular data presented herein do not adequately resolve this problem.
Resumo:
Hepatozoonosis is a tick-borne disease whose transmission to dogs occurs by ingestion of oocysts infected ticks or feeding on preys infested by infected ticks. Until now, there is no previous report of molecular characterization of Hepatozoon sp. in dogs from Colombia. EDTA blood samples were collected from 91 dogs from central-western region of Colombia (Bogota, Bucaramanga, and Villavicencio cities) and submitted to 18S rRNA Hepatozoon sp. PCR and blood smears confection. Phylogenetic analysis was used to access the identity of Hepatozoon species found in sampled dogs. From 91 sampled dogs, 29 (31.8%) were positive to Hepatozoon sp. (25 dogs were only positive in PCR, 1 was positive only in blood smears, and 3 were positive in both blood smears and PCR). After sequencing, the found Hepatozoon sp. DNA showed 100% of identity with Hepatozoon canis DNA isolates. The phylogenetic tree supported the identity of the found Hepatozoon sp. DNA, showing that the isolates from Colombia were placed in the same clade than other H. canis isolates from Venezuela, Spain, and Taiwan. This is the first molecular detection of H. canis in dogs from Colombia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this review, we summarize the energetic and physiological correlates of prey handling and ingestion in lizards and snakes. There were marked differences in the magnitude of aerobic metabolism during prey handling and ingestion between these two groups, although they show a similar pattern of variation as a function of relative prey mass. For lizards, the magnitude of aerobic metabolism during prey handling and ingestion also varied as a function of morphological specializations for a particular habitat, prey type, and behavior. For snakes, interspecific differences in aerobic metabolism during prey handling seem to be correlated with adaptations for prey capture (venom injection vs. constriction). During ingestion by snakes, differences in aerobic metabolism might be due to differences in cranial morphology, although allometric effects might be a potentially confounded effect. Anaerobic metabolism is used for prey handling and ingestion, but its relative contribution to total ATP production seems to be more pronounced in snakes than in lizards. The energetic costs of prey handling and ingestion are trivial for both groups and cannot be used to predict patterns of prey-size selection. For lizards, it seems that morphological and ecological factors set the constraints on prey handling and ingestion. For snakes, besides these two factors, the capacity of the cardio-respiratory system may also be an important factor constraining the capacity for prey handling and ingestion. © 2001 Elsevier B.V.
Resumo:
Molecular markers have gradually replaced morphological markers in population studies. The advantages of molecular markers are the speed and precision of evaluations, mainly for long cycle cultures, where determinate traits can take years to manifest. The principle objectives of this research were to assess variability and genetic distances in four generations of Eucalyptus urophylla and provide data that help with the continued improvement of these materials. The populations can be found at the Experimental Forestry Sciences Station, Anhembi, SP, belonging to the College of Agriculture Luiz de Queiroz of São Paulo University. The initial base population was introduced by seeds collected in indonesia and designated P0 generation. The subsequent segregated generations, derivatives of recombination starting with open pollination, were designated P1, P2, and P3. One hundred and seventy four individual trees representing the four generations were analysed. The RAPD technique allowed the identification of 86 loci that were analysed with the Jaccard Coefficient, generating a genetic similarity matrix, permitting the estimation of genetic distances. The genetic distance of generation PO was 0.3338333, P1 was 0.336824, P2 was 0.40000, and P3 was 0.381093. In percentage terms the genetic distances between individuals grew in relation to base population, being 0.15% for generation P1, 18.93% for P2, and 13.31% for P3. This shows an increase in genetic variability with the advance of the program, despite the selective processes. From this came the belief that the initial base population was resulting from seed collection from isolated trees. These populations, although going through successive selections, had a high cross efficiency through satisfactory pollination, which then permitted genetic variation to increase, the outcome of effective recombination between individuals. Generations P2 and P3 gave a better perspective for the continuance of the improvement program due to the high number of different groups with standard genetic distances of 35%. The selections made between the diverse genetic groups allowed the efficient use of genetic variability evaluation.
Resumo:
Nylon6 is an attractive polymer for engineering applications because it has reactive functionality through amine and carboxyl end groups that are capable of reacting. For this reason, it has been used a lot in polymeric blends. Blends of nylon6/ABS (acrylonitrile-butadiene-styrene) were produced using glycidyl methacrylate-methyl methacrylate (GMA-MMA) copolymers as compatibilizer. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable coarse phase morphology and weak interfaces between the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the ABS phase and consequently optimized Izod impact properties. However, the compatibilized blend showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2005 Springer Science + Business Media, Inc.
Resumo:
We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other colubrid groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.
Resumo:
We present the results of the first molecular analysis of the phylogenetic affinities of the Asian colubroid genus Sibynophis. We recovered a sister-group relationship between Sibynophis and the New World Scaphiodontophis. Although Liophidium sometimes is associated with these genera, the relationship is distant. Morphological characters that Liophidium shares with Sibynophis and Scaphiodontophis are resolved as homoplasies that probably reflect the similarities of their specialized feeding habits. The traditional subfamily Sibynophiinae is elevated to the family-level, and Scaphiodontophiinae is placed in its synonymy.
Resumo:
Aim. This study aimed to observe the morphological and molecular effect of laminin-1 doping to nanostructured implant surfaces in a rabbit model. Materials and Methods. Nanostructured implants were coated with laminin-1 (test; dilution, 100 g/mL) and inserted into the rabbit tibiae. Noncoated implants were used as controls. After 2 weeks of healing, the implants were removed and subjected to morphological analysis using scanning electron microscopy (SEM) and gene expression analysis using the real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Results. SEM revealed bony tissue attachment for both control and test implants. Real-time RT-PCR analysis showed that the expression of osteoblast markers RUNX-2, osteocalcin, alkaline phosphatase, and collagen I was higher (1.62-fold, 1.53-fold, 1.97-fold, and 1.04-fold, resp.) for the implants modified by laminin-1 relative to the control. All osteoclast markers investigated in the study presented higher expression on the test implants than controls as follows: tartrate-resistant acid phosphatase (1.67-fold), calcitonin receptor (1.35-fold), and ATPase (1.25-fold). The test implants demonstrated higher expression of inflammatory markers interleukin-10 (1.53-fold) and tumour necrosis factor-α (1.61-fold) relative to controls. Conclusion. The protein-doped surface showed higher gene expression of typical genes involved in the osseointegration cascade than the control surface. © 2012 Humberto Osvaldo Schwartz-Filho et al.
Resumo:
Hereditary myotonia caused by mutations in CLCN1 has been previously described in humans, goats, dogs, mice and horses. The goal of this study was to characterize the clinical, morphological and genetic features of hereditary myotonia in Murrah buffalo. Clinical and laboratory evaluations were performed on affected and normal animals. CLCN1 cDNA and the relevant genomic region from normal and affected animals were sequenced. The affected animals exhibited muscle hypertrophy and stiffness. Myotonic discharges were observed during EMG, and dystrophic changes were not present in skeletal muscle biopsies; the last 43 nucleotides of exon-3 of the CLCN1 mRNA were deleted. Cloning of the genomic fragment revealed that the exclusion of this exonic sequence was caused by aberrant splicing, which was associated with the presence of a synonymous SNP in exon-3 (c.396C>T). The mutant allele triggered the efficient use of an ectopic 5' splice donor site located at nucleotides 90-91 of exon-3. The predicted impact of this aberrant splicing event is the alteration of the CLCN1 translational reading frame, which results in the incorporation of 24 unrelated amino acids followed by a premature stop codon. Copyright © 2012 Elsevier B.V. All rights reserved.
Resumo:
Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42. days, (F5) 5. days of fasting and 37. days of refeeding, and (F10) 10. days of fasting and 32. days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n = 14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10. days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5. days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes. © 2013.
Resumo:
Objective: To evaluate the correlations between clinical-radiographical aspects and histomorphometric-molecular parameters of endosseous dental implant sites in humans. Material and methods: The study sample consisted of bone implant sites from the jawbones of 32 volunteers, which were classified according to two different systems: (1) based only on periapical and panoramic images (PP); (2) as proposed by Lekholm & Zarb (L&Z). Bone biopsies were removed using trephine during the first drilling for implant placement. Samples were stained with haematoxylin-eosin (HE), and histomorphometric analysis was performed to obtain the following parameters: trabecular thickness (Tb.Th), trabecular number, bone volume density (BV/TV), bone specific surface (BS/BV), bone surface density and trabecular separation (Tb.Sp). In addition, immunohistochemistry analysis was performed on bone tissue samples for the proteins, Receptor activator of nuclear factor kappa-B (RANK), RANK ligand (RANKL), osteoprotegerin (OPG) and Osteocalcin (OC). Also, the determination of the relative levels of gene expression was performed using Reverse transcription-real-time Polymerase Chain Reaction (RT-PCR). Results: PP and L&Z classification systems revealed a moderate correlation with BV/TV, BS/BV, Tb.Th and Tb.Sp. L&Z's system identified differences among bone types when BV/TV, BS/BV, Tb.Th and Tb.Sp were compared. A weak correlation between PP/L&Z classifications and the expression of bone metabolism regulators (RANK, RANKL, OPG e OC) was found. The analysis of mRNA expression showed no difference between the bone types evaluated. Conclusions: Our results suggest that PP and L&Z subjective bone-type classification systems are related to histomorphometric aspects. These data may contribute to the validation of these classifications. Bone remodelling regulatory molecules do not seem to influence morphological aspects of the jawbone © 2011 John Wiley & Sons A/S.
Resumo:
In healthy individuals, Candida species are considered commensal yeasts of the oral cavity. However, these microorganisms can also act as opportunist pathogens, particularly the so-called non-albicans Candida species that are increasingly recognized as important agents of human infection. Several surveys have documented increased rates of C. glabrata, C. tropicalis, C. guilliermondii, C. dubliniensis, C. parapsilosis, and C. krusei in local and systemic fungal infections. Some of these species are resistant to antifungal agents. Consequently, rapid and correct identification of species can play an important role in the management of candidiasis. Conventional methods for identification of Candida species are based on morphological and physiological attributes. However, accurate identification of all isolates from clinical samples is often complex and time-consuming. Hence, several manual and automated rapid commercial systems for identifying these organisms have been developed, some of which may have significant sensitivity issues. To overcome these limitations, newer molecular typing techniques have been developed that allow accurate and rapid identification of Candida species. This study reviewed the current state of identification methods for yeasts, particularly Candida species. © 2013 John Wiley & Sons A/S.
Resumo:
Studies on the molecular bases of the neurotoxic action of acaricides are found in the literature; but there are no studies of this action on the nervous system of ticks at the cellular level. The present study describes the morphological and cytochemical changes in the synganglion of Rhipicephalus sanguineus semi-engorged females exposed to different concentrations of permethrin, a pyrethroid with recognized neurotoxic action. Permethrin induced the degeneration of the synganglion through a process of apoptosis involving autophagy, characterized by the condensation and margination of the chromatin, formation of blebs in the nuclear envelope and fragmentation of the nucleus, loss of shape of neural cells and integrity of cellular membrane, cytoplasmic shrinkage, and lower levels of acid phosphatase in the nervous tissue as the concentration of permethrin increased. This study provided further evidence of the neurotoxic action of permethrin, which impairs the metabolism of R. sanguineus nervous systems, and consequently the physiology of other systems, dependent on the neural control. These results provide cytochemical and histological confirmation of the neurotoxic action of permethrin, previously inferred from molecular and tick behavioral evidence. © 2013 Elsevier B.V.
Resumo:
Hepatozoon spp. are commonly found infecting snakes. Since the latter are parasitized by diverse forms and data in the literature show divergence, we studied Hepatozoon spp. diversity on Crotalus durissus terrificus snakes using both molecular and morphological approaches. Naturally infected animals were employed. Blood was collected, blood smears were prepared and an aliquot was stored at -20. °C for DNA extraction. Five specimens of C. durissus terrificus were selected, each of them infected with one gamont type. Morphological and morphometric analyses of the found gamonts led to their grouping into three populations. For molecular characterization, seven oligonucleotide pairs that amplify distinct regions of rDNA gene were tested by adopting the PCR technique. Only the oligonucleotide pairs HepF300/Hep900 and HEMO1/HEMO2 were efficient in amplifying and distinguishing different isolates of Hepatozoon spp. from snakes. The better results were obtained when both oligonucleotide pairs were used in association. Based on the molecular and morphologic differences, three new species were proposed: Hepatozoon cuestensis sp. nov.; Hepatozoon cevapii sp. nov. and Hepatozoon massardii sp. nov. This is the first description of new Hepatozoon species from snakes, based on molecular characterization and morphological data, in South America. © 2013 Elsevier Inc.