975 resultados para Mean-field model
Resumo:
The relation between tunnel magnetoresistance (TMR) and spin polarization is explored for GaMnAs∕GaAlAs∕GaMnAs structures where the carriers experience strong spin–orbit interactions. TMR is calculated using the Landauer approach. The materials are described in the 6 band k⋅p model which includes spin–orbit interaction. Ferromagnetism is described in the virtual crystal mean field approximations. Our results indicate that TMR is a function of spin polarization and barrier thickness. As a result of the stong spin–orbit interactions, TMR also depends on the the angle between current flow direction and the electrode magnetization. These results compromise the validity of Julliere formula.
Resumo:
Central compact objects (CCOs) are X-ray sources lying close to the centre of supernova remnants, with inferred values of the surface magnetic fields significantly lower (≲1011 G) than those of standard pulsars. In this paper, we revise the hidden magnetic field scenario, presenting the first 2D simulations of the submergence and re-emergence of the magnetic field in the crust of a neutron star. A post-supernova accretion stage of about 10−4–10−3 M⊙ over a vast region of the surface is required to bury the magnetic field into the inner crust. When accretion stops, the field re-emerges on a typical time-scale of 1–100 kyr, depending on the submergence conditions. After this stage, the surface magnetic field is restored close to its birth values. A possible observable consequence of the hidden magnetic field is the anisotropy of the surface temperature distribution, in agreement with observations of several of these sources. We conclude that the hidden magnetic field model is viable as an alternative to the antimagnetar scenario, and it could provide the missing link between CCOs and the other classes of isolated neutron stars.
Resumo:
Application of a perpendicular magnetic field to charge neutral graphene is expected to result in a variety of broken symmetry phases, including antiferromagnetic, canted, and ferromagnetic. All these phases open a gap in bulk but have very different edge states and noncollinear spin order, recently confirmed experimentally. Here we provide an integrated description of both edge and bulk for the various magnetic phases of graphene Hall bars making use of a noncollinear mean field Hubbard model. Our calculations show that, at the edges, the three types of magnetic order are either enhanced (zigzag) or suppressed (armchair). Interestingly, we find that preformed local moments in zigzag edges interact with the quantum spin Hall like edge states of the ferromagnetic phase and can induce backscattering.
Resumo:
For many strongly correlated metals with layered crystal structure the temperature dependence of the interlayer resistance is different to that of the intralayer resistance. We consider a small polaron model which exhibits this behavior, illustrating how the interlayer transport is related to the coherence of quasiparticles within the layers. Explicit results are also given for the electron spectral function, interlayer optical conductivity, and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and the other incoherent (dominant at high temperatures).
Resumo:
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.
Resumo:
We review the role of strong electronic correlations in quasi-two-dimensional organic charge transfer salts such as (BEDT-TTF)(2)X, (BETS)(2)Y, and beta'-[Pd(dmit)(2)](2)Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerized and is described by a half-filled Hubbard model; the second class is not strongly dimerized and is described by a quarter-filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi-two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and 'bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field. These include parameterizing minimal models, the evidence for a pseudogap from nuclear magnetic resonance (NMR) experiments, superconductors with low critical temperatures and extremely small superfluid stiffnesses, the possible spin- liquid states in kappa-(ET)(2)Cu-2(CN)(3) and beta'-[Pd(dmit)(2)](2)Z, and the need for high quality large single crystals.
Resumo:
We analyse Gallager codes by employing a simple mean-field approximation that distorts the model geometry and preserves important interactions between sites. The method naturally recovers the probability propagation decoding algorithm as a minimization of a proper free-energy. We find a thermodynamical phase transition that coincides with information theoretical upper-bounds and explain the practical code performance in terms of the free-energy landscape.
Resumo:
The Thouless-Anderson-Palmer (TAP) approach was originally developed for analysing the Sherrington-Kirkpatrick model in the study of spin glass models and has been employed since then mainly in the context of extensively connected systems whereby each dynamical variable interacts weakly with the others. Recently, we extended this method for handling general intensively connected systems where each variable has only O(1) connections characterised by strong couplings. However, the new formulation looks quite different with respect to existing analyses and it is only natural to question whether it actually reproduces known results for systems of extensive connectivity. In this chapter, we apply our formulation of the TAP approach to an extensively connected system, the Hopfield associative memory model, showing that it produces identical results to those obtained by the conventional formulation.
Resumo:
The principled statistical application of Gaussian random field models used in geostatistics has historically been limited to data sets of a small size. This limitation is imposed by the requirement to store and invert the covariance matrix of all the samples to obtain a predictive distribution at unsampled locations, or to use likelihood-based covariance estimation. Various ad hoc approaches to solve this problem have been adopted, such as selecting a neighborhood region and/or a small number of observations to use in the kriging process, but these have no sound theoretical basis and it is unclear what information is being lost. In this article, we present a Bayesian method for estimating the posterior mean and covariance structures of a Gaussian random field using a sequential estimation algorithm. By imposing sparsity in a well-defined framework, the algorithm retains a subset of “basis vectors” that best represent the “true” posterior Gaussian random field model in the relative entropy sense. This allows a principled treatment of Gaussian random field models on very large data sets. The method is particularly appropriate when the Gaussian random field model is regarded as a latent variable model, which may be nonlinearly related to the observations. We show the application of the sequential, sparse Bayesian estimation in Gaussian random field models and discuss its merits and drawbacks.
Resumo:
The diffusion and convection of a solute suspended in a fluid across porous membranes are known to be reduced compared to those in a bulk solution, owing to the fluid mechanical interaction between the solute and the pore wall as well as steric restriction. If the solute and the pore wall are electrically charged, the electrostatic interaction between them could affect the hindrance to diffusion and convection. In this study, the transport of charged spherical solutes through charged circular cylindrical pores filled with an electrolyte solution containing small ions was studied numerically by using a fluid mechanical and electrostatic model. Based on a mean field theory, the electrostatic interaction energy between the solute and the pore wall was estimated from the Poisson-Boltzmann equation, and the charge effect on the solute transport was examined for the solute and pore wall of like charge. The results were compared with those obtained from the linearized form of the Poisson-Boltzmann equation, i.e.the Debye-Hückel equation. © 2012 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.
Resumo:
A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.
Resumo:
Based on dynamic renormalization group techniques, this letter analyzes the effects of external stochastic perturbations on the dynamical properties of cholesteric liquid crystals, studied in presence of a random magnetic field. Our analysis quantifies the nature of the temperature dependence of the dynamics; the results also highlight a hitherto unexplored regime in cholesteric liquid crystal dynamics. We show that stochastic fluctuations drive the system to a second-ordered Kosterlitz-Thouless phase transition point, eventually leading to a Kardar-Parisi-Zhang (KPZ) universality class. The results go beyond quasi-first order mean-field theories, and provides the first theoretical understanding of a KPZ phase in distorted nematic liquid crystal dynamics.
Resumo:
Considering the disorder caused in manganites by the substitution Mn→Fe or Ga, we accomplish a systematic study of doped manganites begun in previous papers. To this end, a disordered model is formulated and solved using the variational mean-field technique. The subtle interplay between double exchange, superexchange, and disorder causes similar effects on the dependence of T_(C) on the percentage of Mn substitution in the cases considered. Yet, in La_(2/3)Ca_(1/3)Mn_(1-y)Ga_(y)O_(3) our results suggest a quantum critical point (QCP) for y ≈ 0.1–0.2, associated to the localization of the electronic states of the conduction band. In the case of La_(x)Ca_(x)Mn_(1-y)Fe_(y)O_(3) (with x = 1/3,3/8) no such QCP is expected.
Resumo:
The conventional mechanism of fermion mass generation in the Standard Model involves Spontaneous Symmetry Breaking (SSB). In this thesis, we study an alternate mechanism for the generation of fermion masses that does not require SSB, in the context of lattice field theories. Being inherently strongly coupled, this mechanism requires a non-perturbative approach like the lattice approach.
In order to explore this mechanism, we study a simple lattice model with a four-fermion interaction that has massless fermions at weak couplings and massive fermions at strong couplings, but without any spontaneous symmetry breaking. Prior work on this type of mass generation mechanism in 4D, was done long ago using either mean-field theory or Monte-Carlo calculations on small lattices. In this thesis, we have developed a new computational approach that enables us to perform large scale quantum Monte-Carlo calculations to study the phase structure of this theory. In 4D, our results confirm prior results, but differ in some quantitative details of the phase diagram. In contrast, in 3D, we discover a new second order critical point using calculations on lattices up to size $ 60^3$. Such large scale calculations are unprecedented. The presence of the critical point implies the existence of an alternate mechanism of fermion mass generation without any SSB, that could be of interest in continuum quantum field theory.