954 resultados para Maxwells Equations
Resumo:
11 p.
Resumo:
Starting from the second-order finite volume scheme,though numerical value perturbation of the cell facial fluxes, the perturbational finite volume (PFV) scheme of the Navier-Stokes (NS) equations for compressible flow is developed in this paper. The central PFV scheme is used to compute the one-dimensional NS equations with shock wave.Numerical results show that the PFV scheme can obtain essentially non-oscillatory solution.
Resumo:
A set of new formula of energy functions for ferroelectrics was proposed, and then the new basic equations were derived in this paper. The finite element formulation based on the new basic equations was improved to avoid the equivalent nodal load produced by remnant polarization. With regard to the fundamentals of mathematics and physics, the new energy functions and basic equations are reasonable for the material element of ferroelectrics in finite element analysis.
Resumo:
This paper is devoted to the study of convergence properties of distances between points and the existence and uniqueness of best proximity and fixed points of the so-called semicyclic impulsive self-mappings on the union of a number of nonempty subsets in metric spaces. The convergences of distances between consecutive iterated points are studied in metric spaces, while those associated with convergence to best proximity points are set in uniformly convex Banach spaces which are simultaneously complete metric spaces. The concept of semicyclic self-mappings generalizes the well-known one of cyclic ones in the sense that the iterated sequences built through such mappings are allowed to have images located in the same subset as their pre-image. The self-mappings under study might be in the most general case impulsive in the sense that they are composite mappings consisting of two self-mappings, and one of them is eventually discontinuous. Thus, the developed formalism can be applied to the study of stability of a class of impulsive differential equations and that of their discrete counterparts. Some application examples to impulsive differential equations are also given.
Resumo:
1 p. -- [Editorial Material]
Resumo:
Energy functions (or characteristic functions) and basic equations for ferroelectrics in use today are given by those for ordinary dielectrics in the physical and mechanical communications. Based on these basic equations and energy functions, the finite element computation of the nonlinear behavior of the ferroelectrics has been carried out by several research groups. However, it is difficult to process the finite element computation further after domain switching, and the computation results are remarkably deviating from the experimental results. For the crack problem, the iterative solution of the finite element calculation could not converge and the solutions for fields near the crack tip oscillate. In order to finish the calculation smoothly, the finite element formulation should be modified to neglect the equivalent nodal load produced by spontaneous polarization gradient. Meanwhile, certain energy functions for ferroelectrics in use today are not compatible with the constitutive equations of ferroelectrics and need to be modified. This paper proposes a set of new formulae of the energy functions for ferroelectrics. With regard to the new formulae of the energy functions, the new basic equations for ferroelectrics are derived and can reasonably explain the question in the current finite element analysis for ferroelectrics.
Resumo:
A parallel strategy for solving multidimensional tridiagonal equations is investigated in this paper. We present in detail an improved version of single parallel partition (SPP) algorithm in conjunction with message vectorization, which aggregates several communication messages into one to reduce the communication cost. We show the resulting block SPP can achieve good speedup for a wide range of message vector length (MVL), especially when the number of grid points in the divided direction is large. Instead of only using the largest possible MVL, we adopt numerical tests and modeling analysis to determine an optimal MVL so that significant improvement in speedup can be obtained.