972 resultados para Matrix-interstitial interaction
Resumo:
In this paper, a static synchronous series compensator (SSSC), along with a fixed capacitor, is used to avoid torsional mode instability in a series compensated transmission system. A 48-step harmonic neutralized inverter is used for the realization of the SSSC. The system under consideration is the IEEE first benchmark model on SSR analysis. The system stability is studied both through eigenvalue analysis and EMTDC/PSCAD simulation studies. It is shown that the combination of the SSSC and the fixed capacitor improves the synchronizing power coefficient. The presence of the fixed capacitor ensures increased damping of small signal oscillations. At higher levels of fixed capacitor compensation, a damping controller is required to stabilize the torsional modes of SSR.
Resumo:
Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening. © 2010 Landes Bioscience.
Resumo:
The effective atomic number is widely employed in radiation studies, particularly for the characterisation of interaction processes in dosimeters, biological tissues and substitute materials. Gel dosimeters are unique in that they comprise both the phantom and dosimeter material. In this work, effective atomic numbers for total and partial electron interaction processes have been calculated for the first time for a Fricke gel dosimeter, five hypoxic and nine normoxic polymer gel dosimeters. A range of biological materials are also presented for comparison. The spectrum of energies studied spans 10 keV to 100 MeV, over which the effective atomic number varies by 30 %. The effective atomic numbers of gels match those of soft tissue closely over the full energy range studied; greater disparities exist at higher energies but are typically within 4 %.
Resumo:
Prostate cancer metastasis is reliant on the reciprocal interactions between cancer cells and the bone niche/micro-environment. The production of suitable matrices to study metastasis, carcinogenesis and in particular prostate cancer/bone micro-environment interaction has been limited to specific protein matrices or matrix secreted by immortalised cell lines that may have undergone transformation processes altering signaling pathways and modifying gene or receptor expression. We hypothesize that matrices produced by primary human osteoblasts are a suitable means to develop an in vitro model system for bone metastasis research mimicking in vivo conditions. We have used a decellularized matrix secreted from primary human osteoblasts as a model for prostate cancer function in the bone micro-environment. We show that this collagen I rich matrix is of fibrillar appearance, highly mineralized, and contains proteins, such as osteocalcin, osteonectin and osteopontin, and growth factors characteristic of bone extracellular matrix (ECM). LNCaP and PC3 cells grown on this matrix, adhere strongly, proliferate, and express markers consistent with a loss of epithelial phenotype. Moreover, growth of these cells on the matrix is accompanied by the induction of genes associated with attachment, migration, increased invasive potential, Ca2+ signaling and osteolysis. In summary, we show that growth of prostate cancer cells on matrices produced by primary human osteoblasts mimics key features of prostate cancer bone metastases and thus is a suitable model system to study the tumor/bone micro-environment interaction in this disease.
Resumo:
This workshop explores innovative approaches to understanding and cultivating sustainable food culture in urban environments via human-computer-interaction (HCI) design and ubiquitous technologies. We perceive the city as an intersecting network of people, place, and technology in constant transformation. Our 2009 OZCHI workshop, Hungry 24/7? HCI Design for Sustainable Food Culture, opened a new space for discussion on this intersection amongst researchers and practitioners from diverse backgrounds including academia, government, industry, and non-for-profit organisations. Building on the past success, this new instalment of the workshop series takes a more refined view on mobile human-food interaction and the role of interactive media in engaging citizens to cultivate more sustainable everyday human-food interactions on the go. Interactive media in this sense is distributed, pervasive, and embedded in the city as a network. The workshop addresses environmental, health, and social domains of sustainability by bringing together insights across disciplines to discuss conceptual and design approaches in orchestrating mobility and interaction of people and food in the city as a network of people, place, technology, and food.
Resumo:
To understand human behavior, it is important to know under what conditions people deviate from selfish rationality. This study explores the interaction of natural survival instincts and internalized social norms using data on the sinking of the Titanic and the Lusitania. We show that time pressure appears to be crucial when explaining behavior under extreme conditions of life and death. Even though the two vessels and the composition of their passengers were quite similar, the behavior of the individuals on board was dramatically different. On the Lusitania, selfish behavior dominated (which corresponds to the classical homo oeconomicus); on the Titanic, social norms and social status (class) dominated, which contradicts standard economics. This difference could be attributed to the fact that the Lusitania sank in 18 minutes, creating a situation in which the short-run flight impulse dominates behavior. On the slowly sinking Titanic (2 hours, 40 minutes), there was time for socially determined behavioral patterns to re-emerge. To our knowledge, this is the first time that these shipping disasters have been analyzed in a comparative manner with advanced statistical (econometric) techniques using individual data of the passengers and crew. Knowing human behavior under extreme conditions allows us to gain insights about how varied human behavior can be depending on differing external conditions.
Resumo:
Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns
Resumo:
The integration of computer technologies into everyday classroom life continues to provide pedagogical challenges for school systems, teachers and administrators. Data from an exploratory case study of one teacher and a multiage class of children in the first years of schooling in Australia show that when young children are using computers for set tasks in small groups, they require ongoing support from teachers, and to engage in peer interactions that are meaningful and productive. Classroom organization and the nature of teacher-child talk are key factors in engaging children in set tasks and producing desirable learning and teaching outcomes.