946 resultados para Markov-modulated model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper concerns the problem of agent trust in an electronic market place. We maintain that agent trust involves making decisions under uncertainty and therefore the phenomenon should be modelled probabilistically. We therefore propose a probabilistic framework that models agent interactions as a Hidden Markov Model (HMM). The observations of the HMM are the interaction outcomes and the hidden state is the underlying probability of a good outcome. The task of deciding whether to interact with another agent reduces to probabilistic inference of the current state of that agent given all previous interaction outcomes. The model is extended to include a probabilistic reputation system which involves agents gathering opinions about other agents and fusing them with their own beliefs. Our system is fully probabilistic and hence delivers the following improvements with respect to previous work: (a) the model assumptions are faithfully translated into algorithms; our system is optimal under those assumptions, (b) It can account for agents whose behaviour is not static with time (c) it can estimate the rate with which an agent's behaviour changes. The system is shown to significantly outperform previous state-of-the-art methods in several numerical experiments. Copyright © 2010, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows. © 2012 KSI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we discuss how discriminative training can be applied to the hidden vector state (HVS) model in different task domains. The HVS model is a discrete hidden Markov model (HMM) in which each HMM state represents the state of a push-down automaton with a finite stack size. In previous applications, maximum-likelihood estimation (MLE) is used to derive the parameters of the HVS model. However, MLE makes a number of assumptions and unfortunately some of these assumptions do not hold. Discriminative training, without making such assumptions, can improve the performance of the HVS model by discriminating the correct hypothesis from the competing hypotheses. Experiments have been conducted in two domains: the travel domain for the semantic parsing task using the DARPA Communicator data and the Air Travel Information Services (ATIS) data and the bioinformatics domain for the information extraction task using the GENIA corpus. The results demonstrate modest improvements of the performance of the HVS model using discriminative training. In the travel domain, discriminative training of the HVS model gives a relative error reduction rate of 31 percent in F-measure when compared with MLE on the DARPA Communicator data and 9 percent on the ATIS data. In the bioinformatics domain, a relative error reduction rate of 4 percent in F-measure is achieved on the GENIA corpus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. Probabilistic graphical structures can be a combination of graph and probability theory that provide numerous advantages when it comes to the representation of domains involving uncertainty, domains such as the mental health domain. In this thesis the advantages that probabilistic graphical structures offer in representing such domains is built on. The Galatean Risk Screening Tool (GRiST) is a psychological model for mental health risk assessment based on fuzzy sets. In this thesis the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. This thesis describes how a chain graph can be developed from the psychological model to provide a probabilistic evaluation of risk that complements the one generated by GRiST’s clinical expertise by the decomposing of the GRiST knowledge structure in component parts, which were in turned mapped into equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgements

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent explosive growth of voice over IP (VoIP) solutions calls for accurate modelling of VoIP traffic. This study presents measurements of ON and OFF periods of VoIP activity from a significantly large database of VoIP call recordings consisting of native speakers speaking in some of the world's most widely spoken languages. The impact of the languages and the varying dynamics of caller interaction on the ON and OFF period statistics are assessed. It is observed that speaker interactions dominate over language dependence which makes monologue-based data unreliable for traffic modelling. The authors derive a semi-Markov model which accurately reproduces the statistics of composite dialogue measurements. © The Institution of Engineering and Technology 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. The Galatean Risk Screening Tool [1] is a psychological model for mental health risk assessment based on fuzzy sets. This paper details how the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. These semantics are formalised by a detailed specification for an XML structure used to represent the expertise. The component parts were then mapped to equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgements. © Springer-Verlag 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Multi-Domain Information Model for organisation of the information bases is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a speech recognition engine using hybrid model of Hidden Markov Model (HMM) and Gaussian Mixture Model (GMM). Both the models have been trained independently and the respective likelihood values have been considered jointly and input to a decision logic which provides net likelihood as the output. This hybrid model has been compared with the HMM model. Training and testing has been done by using a database of 20 Hindi words spoken by 80 different speakers. Recognition rates achieved by normal HMM are 83.5% and it gets increased to 85% by using the hybrid approach of HMM and GMM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 62M10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60K15, 60K20, 60G20,60J75, 60J80, 60J85, 60-08, 90B15.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software product line modeling aims at capturing a set of software products in an economic yet meaningful way. We introduce a class of variability models that capture the sharing between the software artifacts forming the products of a software product line (SPL) in a hierarchical fashion, in terms of commonalities and orthogonalities. Such models are useful when analyzing and verifying all products of an SPL, since they provide a scheme for divide-and-conquer-style decomposition of the analysis or verification problem at hand. We define an abstract class of SPLs for which variability models can be constructed that are optimal w.r.t. the chosen representation of sharing. We show how the constructed models can be fed into a previously developed algorithmic technique for compositional verification of control-flow temporal safety properties, so that the properties to be verified are iteratively decomposed into simpler ones over orthogonal parts of the SPL, and are not re-verified over the shared parts. We provide tool support for our technique, and evaluate our tool on a small but realistic SPL of cash desks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60J80.