881 resultados para Malondialdehyde-acetaldehyde Adducts
Resumo:
The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.
Resumo:
A convenient and efficient synthesis of substituted dihydrofurans is developed via ring-enlargement of 1-dimethylaminopropenoyl-1-carbamoyl/benzoyl cycloproparres catalyzed by ammonium acetate in acetic acid with high regio- and stereoselectivity. Some of the newly synthesized substituted dihydrofurans are subjected to further synthetic transformation in the presence of NaOH (aq) in ethanol to afford the corresponding 5-aryl-2,3-dihydrofuro[3,2-c]pyfidin-4(5H)-ones in high yields.
Resumo:
This study sought to determine the main components (saccharides and phenolic acids) in crude extract of the Chinese herb Tanshen by electrospray ionization Fourier transform ion cyclotron resonant mass spectrometry (ESI-FT-ICR-MS) in negative-ion mode. Eleven compounds were identified as phenolic acids by exact mass measurement and further confirmed by sustained off-resonance irradiation (SORI) CID data. In addition, monosaccharicles and oligosaccharides (n = 2 similar to 5) and a serial of corresponding anionic adducts of saccharide were observed without adding any anions additionally to the extract solution, and the anionic components were unambiguously identified as H2O, HCl, HCOOH, HNO3, C3H6O2, H2SO4 and C5H7NO3 according to the exact mass measurement results.
Resumo:
A series of chromium/Schiff base complexes N,N'-bis(salicylidene)-1,2-phenylenediamino chromium(III) X were prepared and employed for the alternating copolymerization of carbon dioxide with racemic propylene oxide in the presence of (4-dimethylamino)pyridine. The effect of the complex structure and reaction conditions on the catalytic activity, the poly(propylene carbonate)/cyclic carbonate (PPC/PC) selectivity, and the polymer head-to-tail linkages was examined. The experiments indicated that N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-phenylenediamino chromium(III) (NO3) exhibited the highest PPC/PC selectivity as well as polymer head-to-tail linkages and N,N'-bis(3,5-dichlorosalicylidene)-1,2-phenylenediimino chromiu(III) (NO3) possessed the highest catalytic activity among these chromium/Schiff base complexes. The structure of the produced copolymer was characterized by the IR, H-1 NMR, and C-13 NMR measurements.
Resumo:
The formation of fullerooxazoles from C61HPh3- has been examined in benzonitrile (PhCN), m-methoxybenzonitrile (m-OCH3PhCN), m-tolunitrile (m-CH3PhCN), and o-tolunitrile (o-CH3PhCN), where cis-1 bisadducts wit h Ph-, m-OCH3Ph-, m-CH3Ph-, and o-CH3Ph-substituted cyclic imidate next to the phenylmethano are formed its evidenced by various characterizations. Interestingly, only regioisomers 2a-d with the oxygen atom bonded to C4/C5 and the nitrogen atom bonded to C3/C6 are generated its demonstrated by heteronuclear multiple bond coherence (HMBC) NMR, while the alternative regioisomers 3a-d, which have the oxygen and nitrogen atoms at C3/C6 and C4/C5, respectively, are not formed from the reactions, even though the DFT (density functional theory) calculations have predicted that the energy differences between the two types of regioisomers are very small, with regioisomers 3a-d actually having lower energies than 2a-d The results are rationalized by the charge distributions Of C61HPh3-, where computational calculations have shown that the negative charges on C4 and C5 are greater than those on C3 and C6, indicating that the exhibited site selectivity of heteroatoms is a result of the charge-directed addition process
Resumo:
The principal components, isoflavonoids and astragalosides, in the extract of Radix Astragali were detected by a high-performance liquid chromatography Couple to electrospray ionization ion trap multiple-stage tandem mass spectrometry (HPLC-ESI-IT-MSn) method. By comparing the retention time (t(R)) of HPLC, the ESI-MSn data and the structures of analyzed Compounds with the data of reference compounds and in the literature, 17 isoflavonoids and 12 astragalosides have been identified or tentatively deduced. By Virtue of the extracted ion chromatogram (EIC) mode, simultaneous determination of isoflavonoids and astragalosides could be achieved when the different components formed overlapped peaks. And this method has been utilized to analyze the constituents in extracts of Radix Astragali from Helong City and of different growth years. Then the antioxidant activity of different samples has been Successfully investigated by HPLC-ESI-MS method in multiple selected ion monitoring(MIM) mode, applying the spin trapping technology, and the Ferric Reducing Antioxidant Power (FRAP) assay was applied to support the result.
Resumo:
A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M + n + n' matrix + H](+) or [M + n + n' matrix + Na](+) (n = the number of cysteine residues, n' = 1, 2, ..., n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, alpha-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and alpha-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated.
Resumo:
A reinvestigation of the reaction between C-60(2-) and benzyl bromide in benzonitrile containing 0.1 M tetra-n-butylammonium perchlorate (TBAP) has shown that there are more reaction products than previously reported. Use of a silica rather than a "Buckyclutcher I" column for HPLC purification led to isolation of two previously unattained products in the reaction mixture, one of which was identified as 1,2-(PhCH2)(2)C-60 by UV-vis and NMR. The earlier incorrectly assigned 1,2-(PhCH2)(2)C-60 was identified as the methanofullerene C61HPh by X-ray single-crystal diffraction. The electrochemistry of genuine 1,2-(PhCH2)(2)C-60 shows that its first reduction potential in PhCN containing 0.1 M TBAP is cathodically shifted by 100 mV with respect to E-1/2 for reduction of 1,4-(PhCH2)(2)C-60, indicating that the addition pattern significantly affects the electrochemistry of derivatized C-60. Visible and near-IR spectra of the monoanion and dianion of 1,2-(PhCH2)(2)C-60 are also reported.
Resumo:
The underivatized saponins from Tribulus terrestris and Panax ginseng have been investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn). In ESI-MS spectra, a predominant [M + Na](+) ion in positive mode and [M - H](-) ion in negative mode were observed for molecular mass information. Multi-stage tandem mass spectrometry of the molecular ions was used for detailed structural analysis. Fragment ions from glycoside cleavage can provide information on the mass of aglycone and the primary sequence and branching of oligosaccharide chains in terms of classes of monosaccharides. Fragment ions from cross-ring cleavages of sugar residues can give some information about the linkages between sugar residues. It was found that different alkali metal-cationized adducts with saponins have different degrees of fragmentation, which may originate from the different affinity of a saponin with each alkali metal in the gas phase. ESI-MSn has been proven to be an effective tool for rapid determination of native saponins in extract mixtures, thus avoiding tedious derivatization and separation steps.
Resumo:
In this paper, four novel silver(I) sulfonate coordination polymers containing neutral ligands, namely, [Ag(2)Ll (biim)(2)]center dot 2H(2)O (1). AgL2(biim) (2), [Ag(HL3)(Pic)(2)]center dot H2O (3), and [Ag-3(L3)(HL3)(4,4'-bipy)(3)(H2O)(2)]center dot 4H(2)O (4), have been synthesized [L1 = 3-carboxy-4-hydroxybenzenesulfonate, L2 = p-aminobenzenesulfonate, H(2)L3 = p-hydroxybenzenesulfonic acid, biim = 1,1'-(1.4-butanediyl)-bis(imidazole), Pic = beta-picoline, 4,4'-bipy = 4,4'-bipyridine]. For compounds 1 and 2, Ag(I) cations are bridged by biim ligands to form a one-dimensional (1D) "zigzag" chain, and L1 and L2 sulfonate ligands are not coordinated to the silver cation. Compound 3 has a dimeric structure in which two silver cations are bridged by two HL3 ligands. For compound 4, L3 ligand coordinates to a silver cation as a monodentate ligand, and Ag(l) cations are bridged by 4,4'-bipy ligands to form a ID chain. Compound 1 contains water dimers, while compound 4 contains water trimers. Compounds 1-3 display room-temperature photoluminescence.
Resumo:
Electrochemical polymerized polyaniline(PAn) film electrode was used to investigate the electrocatalytic effect of PAn on the electrochemical redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT), PAn film electrode was electrochemically treated or immersed in DMcT solution before it was scanned in 1.0 mol/L HCl electrolyte. The cyclic voltammograms of PAn film electrode in 1.0 mol/L HCl solution changed with the above treatment, implying the electrocatalytic effect of PAn on the redox reaction of DMcT, The formation of electron-donor-acceptor adducts through the interaction between thiol or disulfide groups of DMcT and amine or imine groups of PAn during the treatment was probably the reason of the catalysis, The electrochemical properties of the adduct were different from those of PAn and DMcT, The adduct possessed a higher electrochemical activity and a better electrochemical reversibility than DMcT or PAn used alone.
Resumo:
The title supramolecular compound, [HMDH2][(H2PMoMo11O40)-Mo-V] . 2AA . 3H(2)O . DMF (HMD = hexamethylene diamine; AA=acetaldehyde; DMF=N,N-dimethyl formamide), has been photochemically synthesized by using elemental analysis, IR, solid diffusion reflectance, electronic spectra, ESR spectra and X-ray single-crystal analysis. The crystallographic data: triclinic, P (1) over bar, a=14.092(2), b=14.347(3), c=14.358(3)Angstrom, alpha = 75.10(3), beta = 80.70(3), gamma = 80.73(3)degrees, V = 2746.6(10)Angstrom (3), Z = 2, M-r = 2081.68, D-c=2.517g/cm(3), F(000) =1970, mu (MoK alpha) =2.766mm(-1). The structure has been refined to R =0.0832 and wR=0.2638, by full-matrix least-squares method. The title compound is composed of hexamethylene diamine, two acetaldehyde molecules, three water molecules, one N,N-dimethylformamide and [(H2PMoMo11O40)-Mo-V](2-) heteropoly anion.
Resumo:
The thermooxidative degradtion of ethylene oxide and tetra-hydrofuran (EO-THF) co-polyether has been studied by electron spin resonance (ESR), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. The initial degradation site was found to be at the a-carbon of the ether bond. Two free radicals which derived from dehydrogenation and oxygen addition were successfully detected by spin-trapping technique which used alpha -phenyl-N-tert-butyl nitrone(PBN) as spin trap. Both FT-IR and NMR have been used to follow structural changes of the copolyether during degradation. Nearly 20 product fragments including formate, carbonate, methyl, alcohol, methylene-dioxy, hydroperoxide and semiformal have been characterized by D-1 and D-2 NMR. The thermooxidtion of co-polyether preferred to occur on the THF units especially at the alternating linkage of EO and THF. Antioxidant (BHT) not only retarded the thermooxidation but also modified the degradation products with less ester and methylene-dioxy groups hut more hydroxyl and methyl groups.
Resumo:
A manganese molybdenum phosphate, (NH3CH2CH2NH3)(10)(H3O)(3)(H5O)Na-2[MnMo12O24(OH)(6) (PO4)(4)(PO3OH)(4)][MnMo12O24 (OH)(6)(PO4)(6)(PO3OH)(2)]. 9H(2)O, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. The structure of this compound may be considered to be two [Mo6O12(OH)(3)(PO4)(2)(HPO4)(2)](7-) units bonded together by a manganese atom, although several P-O groups are not protonated on account of coordination to a Na+ cation. One-dimensional tunnels were formed in the solid. A probe reaction of the oxidation of acetaldehyde with H2O2 using this compound as catalyst was carried out in a liquid-solid system, showing that the manganese molybdenum phosphate has high catalytic activity in the reaction.
Resumo:
Monodispersed phenyl-capped trianiline and tetraaniline were successfully synthesized by the reactions of diphenylamine with acetaldehyde-based Sckiff's bases of N-phenyl-1,4-phenylenediamine and 1,4-phenylenediamine, respectively, in the presence of ammonium persulfate and hydrochloric acid, subsequent deprotonation and reduction with phenylhydrazine. The reaction mechanism probably involves the slow hydrolysis of the Sckiff's bases and subsequent oxidative coupling reactions of the formed ammonium salts with diphenylamine at pseudo-high dilution condition of the salts.