963 resultados para Maintenance and preservation
Resumo:
The purpose of this project was to evaluate the location and quantities of debonding in selected portland cement concrete (PCC) overlays. The project entailed an infrared thermographic survey and a ground penetrating radar survey of the PCC overlays to locate areas of debonding between the overlays and the original pavement. An infrared scanner is capable of locating these areas because of the temperature differential which is established between bonded and debonded areas under certain environmental conditions. A conventional video inspection of the top surface of the pavement was also completed in conjunction with the infrared thermographic survey to record the visual condition of the pavement surface. The ground penetrating radar system is capable of locating areas of debonding by detecting return wave forms generated by changes in the dielectric properties at the PCC overlay original pavement interface. This report consists of two parts; a text and a set of plan sheets. The text summarizes the procedures, analyses and conclusions of the investigation. The plan sheets locate specific areas of debonding, as identified through field observations.
Resumo:
Presented in this report is an investigation of the use of "sand-lightweight" concrete in prestressed concrete structures. The sand-lightweight concrete consists of 100% sand substitution for fines, along with Idealite coarse and medium lightweight aggregate and Type I Portland Cement.
Resumo:
Planning and objectives for various departments within the Department of Transportation for 1990
Resumo:
The Iowa Department of Transportation (IDOT) is currently considering improvements for US Highway 65 (US-65) and Iowa State Highway 330 (IA-330) in Polk and Jasper Counties, Iowa. As part of its project planning effort, IDOT is preparing an Environmental Assessment (EA) report which will include a section entitled "Hazardous Waste" to identify known sites in or near the proposed corridors that are, or could be, contaminated with hazardous or petroleum substances.
Resumo:
In February of 1968 a cooperative research project by the Iowa State Highway Commission (Project No. HR-136) and the University of Iowa, Iowa City, Iowa was initiated in order to determine experimentally the creep and shrinkage characteristics of lightweight-aggregate concrete used in the State of Iowa. This report is concerned with Phase 1 of the Project as described in the Prospectus for the project submitted in November of 1967: "The State Highway Commission is planning to conduct pilot studies in prestressed-lightweight structures fabricated with materials that are proposed for use in bridge structures in the near future. Thus, Phase will have as its immediate objective, investigating the materials to be used in the above mentioned pilot studies.” (1) The work described in this report was also carried out in conjunction with a second cooperative project: "Time-Dependent Camber and Deflection of Non-Composite and Composite Lightweight-Prestressed Concrete Beams" (Project No. HR-137).
Resumo:
This report presents alternatives to the Maintenance Division's current field organizational structure. The report also discusses the likely advantages and disadvantages of each alternative.
Resumo:
The study analyzes the need for a four-lane highway between St. Louis and St. Paul, and finds it to be needed; it analyzes the highway's feasibility, and finds it to be feasible; it analyzes alternative design standards and suggests that it be built to expressway standards; and, the study evaluates alternative routes and presents four "finalist" routes for your consideration.
Resumo:
The study analyzes the need for a four-lane highway between St. Louis and St. Paul, and finds it to be needed; it analyzes the highway's feasibility, and finds it to be feasible; it analyzes alternative design standards and suggests that it be built to expressway standards; and, the study evaluates alternative routes and presents four "finalist" routes for your consideration.
Resumo:
Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across the pavement depth. This phenomenon, referred to as PCC pavement curling and warping, has been known and studied since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore important to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also to achieve a better understanding of its relationship to long-term pavement performance. In order to better understand the curling and warping behavior of PCC pavements in Iowa and provide recommendations to mitigate curling and warping deflections, field investigations were performed at six existing sites during the late fall of 2015. These sites included PCC pavements with various ages, slab shapes, mix design aspects, and environmental conditions during construction. A stationary light detection and ranging (LiDAR) device was used to scan the slab surfaces. The degree of curling and warping along the longitudinal, transverse, and diagonal directions was calculated for the selected slabs based on the point clouds acquired using LiDAR. The results and findings are correlated to variations in pavement performance, mix design, pavement design, and construction details at each site. Recommendations regarding how to minimize curling and warping are provided based on a literature review and this field study. Some examples of using point cloud data to build three-dimensional (3D) models of the overall curvature of the slab shape are presented to show the feasibility of using this 3D analysis method for curling and warping analysis.
Resumo:
Pavements tend to deteriorate with time under repeated traffic and/or environmental loading. By detecting pavement distresses and damage early enough, it is possible for transportation agencies to develop more effective pavement maintenance and rehabilitation programs and thereby achieve significant cost and time savings. The structural health monitoring (SHM) concept can be considered as a systematic method for assessing the structural state of pavement infrastructure systems and documenting their condition. Over the past several years, this process has traditionally been accomplished through the use of wired sensors embedded in bridge and highway pavement. However, the use of wired sensors has limitations for long-term SHM and presents other associated cost and safety concerns. Recently, micro-electromechanical sensors and systems (MEMS) and nano-electromechanical systems (NEMS) have emerged as advanced/smart-sensing technologies with potential for cost-effective and long-term SHM. This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) MEMS sensors embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system for health monitoring of concrete pavement (Final Report Volume II).
Resumo:
This article presents the methodology and main results obtained in Spain within the FORMAR project, a European-funded project under the Leonardo Da Vinci scheme (Lifelong Learning Programme), whose main goal is to jointly develop training resources and modules to improve the skills on sustainability issues of buildings maintenance and refurbishment workers, in three different European countries: Spain, Portugal (Project Coordinator) and France. The Units of Short-term Training (UST) developed within this project are focused on the VET of carpenters, painters, bricklayers, building technicians and installers of solar panels, and a transversal unit containing basic concepts on sustainable construction and nearly Zero Energy Buildings (n-ZEB) is also developed. In parallel, clients’ guides for the aforementioned professionals are also implemented to improve the information provided to clients and owners in order to support the procurement decisions regarding building products and materials. Therefore, the project provides an opportunity to exchange experiences between organizations of these three European countries, as the UST will be developed simultaneously in each of them, exploring opportunities for training, guidance and exchange of experience. Even though the UST will have a common structure and contents, they will be slightly different in each country to adapt them to the different specific training needs and regulations of Spain, Portugal and France. This paper details, as a case study, the development process of the UST for carpenters and building technicians in Spain, including the analysis of needs and existing training materials, the main contents developed and the evaluation and testing process of the UST, which involves the active participation of several stakeholders of this sector as well as a classroom testing to obtain the students’ feedback.
Resumo:
This study reports on research that examines the family language policy (FLP) and biliteracy practices of middle-class Chinese immigrant families in a metropolitan area in the southwest of the U.S. by exploring language practices pattern among family members, language and literacy environment at home, parents’ language management, parents’ language attitudes and ideologies, and biliteracy practices. In this study, I employed mixed methods, including survey and interviews, to investigate Chinese immigrant parents’ FLP, biliteracy practices, their life stories, and their experience of raising and nurturing children in an English-dominant society. Survey questionnaires were distributed to 55 Chinese immigrant parents and interviews were conducted with five families, including mothers and children. One finding from this study is that the language practices pattern at home shows the trend of language shift among the Chinese immigrants’ children. Children prefer speaking English with parents, siblings, and peers, and home literacy environment for children manifests an English-dominant trend. Chinese immigrant parents’ language attitudes and ideologies are largely influenced by English-only ideology. The priority for learning English surpasses the importance of Chinese learning, which is demonstrated by the English-dominant home literacy practices and an English-dominant language policy. Parents invest more in English literacy activities and materials for children, and very few parents implement Chinese-only policy for their children. A second finding from this study is that a multitude of factors from different sources shape and influence Chinese immigrants’ FLP and biliteracy practices. The factors consist of family-related factors, social factors, linguistic factors, and individual factors. A third finding from this study is that a wide variety of strategies are adopted by Chinese immigrant families, which have raised quite balanced bilingual children, to help children maintain Chinese heritage language (HL) and develop both English and Chinese literacy. The close examination and comparison of different families with English monolingual children, with children who have limited knowledge of HL, and with quite balanced bilingual children, this study discovers that immigrant parents, especially mothers, play a fundamental and irreplaceable role in their children’s HL maintenance and biliteracy development and it recommends to immigrant parents in how to implement the findings of this study to nurture their children to become bilingual and biliterate. Due to the limited number and restricted area and group of participant sampling, the results of this study may not be generalized to other groups in different contexts.
Resumo:
2008
Resumo:
In chronic pain, opioids represent the gold standard analgesics, but their use is hampered by the development of several side effects, as development of analgesic tolerance and opioid-induced hyperalgesia. Evidence showed that many molecular mechanisms (changes in opioid receptors, neurotransmitter release, and glia/microglia activation) are involved in their appearance, as well as in chronic pain. Recently, a crucial role has been proposed for oxidative stress and proteasome in chronic pain and in treatment-related side effects. To better elucidate these aspects, the aim of this PhD thesis was to investigate the effects of opioids on cell oxidative stress, antioxidant enzymatic machinery and proteasome expression and activity in vitro. Also, the involvement of proteasome in the development of chronic pain conditions was investigated utilizing an experimental model of oxaliplatin-induced neuropathy (OXAIN), in vivo. Data showed that morphine, fentanyl, buprenorphine and tapentadol alter differently ROS production. The ROS increasing effect of morphine is not shared by the other opioids, suggesting that the different pharmacological profile could influence this parameter. Moreover, these drugs produced different alterations of β2trypsin-like and β5chymotrypsin-like activities. In fact, while morphine and fentanyl increased the proteolytic activity after prolonged exposure, a different picture was observed for buprenorphine and tapentadol, suggesting that the level of MOR agonism could be strongly related with proteasome activation. In vivo studies revealed that rats treated with oxaliplatin showed a significant increase in β5, in the thalamus (TH) and somatosensory cortex (SSCx). Moreover, a selective up-regulation of β5 and LMP7 subunit gene expression was assessed in the SSCx. Furthermore, our study revealed that oprozomib, a selective β5 inhibitor normalized the spinal prodynorphin gene expression upregulation induced by oxaliplatin, and reverted mechanical/thermal allodynia and mechanical hyperalgesia in oxaliplatin-treated rats. These results underline the role of proteasome in the OXAIN and suggest new pharmacological targets to counteract it.