997 resultados para Magnetic couplings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report on the magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. Granular distributions of nanoparticles in an inert matrix, of potential use in various applications, were prepared by pyrolysis of organic precursors using the thermally assisted chemical vapour deposition method. By varying the precursor concentration and preparation temperature, compositions with varying iron concentration and nanoparticle sizes were made. Powder x-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy studies revealed the nanocrystalline iron carbide (Fe3C) presence in the partially graphitized matrix. The dependence of the magnetic properties on the particle size and temperature (10 K < T < 300 K) were studied using superconducting quantum interference device magnetometry. Based on the affect of surrounding carbon spins, the observed magnetic behaviour of the nanoparticle compositions, such as the temperature dependence of magnetization and coercivity, can be explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report magnetic trapping of Yb in the excited P-3(2) state. This state, with a lifetime of 15 s, could play an important role in studies ranging from optical clocks and quantum computation to the search for a permanent electric dipole moment. Yb atoms are first cooled and trapped in the ground state in a 399-nm magneto-optic trap. The cold atoms are then pumped into the excited state by driving the S-1(0) -> P-3(1) -> S-3(1) transition. Atoms in the P-3(2) state are magnetically trapped in a spherical quadrupole field with an axial gradient of 110 G/cm. We trap up to 10(6) atoms with a lifetime of 1.5 s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts, and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field, or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the Q/I profiles and rotation of the plane of polarization in the U/I profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady-state and time-varying electric fields that surround radiating atoms in solar atmospheric layers. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is performed to study the unsteady combined forced and free convection flow (mixed convection flow) of a viscous incompressible electrically conducting fluid in the vicinity of an axisymmetric stagnation point adjacent to a heated vertical surface. The unsteadiness in the flow and temperature fields is due to the free stream velocity, which varies arbitrarily with time. Both constant wall temperature and constant heat flux conditions are considered in this analysis. By using suitable transformations, the Navier-Stokes and energy equations with four independent variables (x, y, z, t) are reduced to a system of partial differential equations with two independent variables (eta, tau). These transformations also uncouple the momentum and energy equations resulting in a primary axisymmetric flow, in an energy equation dependent on the primary flow and in a buoyancy-induced secondary flow dependent on both primary flow and energy. The resulting system of partial differential equations has been solved numerically by using both implicit finite-difference scheme and differential-difference method. An interesting result is that for a decelerating free stream velocity, flow reversal occurs in the primary flow after certain instant of time and the magnetic field delays or prevents the flow reversal. The surface heat transfer and the surface shear stress in the primary flow increase with the magnetic field, but the surface shear stress in the buoyancy-induced secondary flow decreases. Further the heat transfer increases with the Prandtl number, but the surface shear stress in the secondary flow decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical shifts of “axial” vs “equatorial” Me protons of some gem-dimethylcyclobutanoids derived from α-pinene, arising from magnetic anisotropy of the ring and as influenced by vicinal substituents, are discussed. Conformational aspects of some cis- and trans-pinonic, pinononic and pinic acids have been elucidated on the basis of NMR evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bhatnagar and Rathna (Quar. Journ. Mech. Appl. Maths., 1963,16, 329) investigated the flows of Newtonian, Reiner-Rivlin and Rivlin-Ericksen fluids between two rotating coaxial cones. In case of the last two types of fluids, they predicted the breaking of secondary flow field in any meridian plane. We find that such breaking is avoided by the application of a sufficiently strong azimuthal magnetic field arising from a line current along the axis of the cones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton magnetic resonance spectra of single crystals of Na2Zn(SO4)2·4H2O have been investigated and the orientations of the water molecules have been determined. Using the heavy atom structure determined by X-rays a system of hydrogen bonds between water and sulphate oxygens has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton magnetic resonance spectra of single crystals of two Tutton's salts, K2Zn (SO4)2.6H22O and K2Mg (SO4)2.6H2O, have been studied and the orientations of the water molecules in the structure have been determined. Using the heavy-atom structure of (NH4) 2Mgt(SO4)2.6H2O as determined by x-ray diffraction, a system of hydrogen bonds between the water and sulfate oxygens in Tutton's salts has been proposed. It appears that the x-ray structure needs considerable refinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-step low-temperature solution combustion (LCS) synthesis was adopted for the preparation of LaMnO3+ (LM) nanopowders. The powders were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS),surface area and Fourier transform infrared spectroscopy (FTIR). The PXRD of as-formed LM showed a cubic phase but, upon calcination (900degrees C, 6 h), it transformed into a rhombohedral phase. The effect of fuel on the formation of LM was examined, and its structure and magnetoresistance properties were investigated. Magnetoresistance (MR) measurements on LM were carried out at 0, 1, 4 and 7 T between 300 and 10 K. LM (fuel-to-oxidizer ratio; = 1) showed an MR of 17% at 1 T, whereas, for 4 and 7 T, it exhibited an MR of 45 and 55%, respectively, near the TM-I. Metallic resistivity data below TM-I showed that the double exchange interaction played a major role in this compound. It was interesting to observe that the sample calcined at 1200 degrees C for 3 h exhibited insulator behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present note we have studied the harmonic and anharmonic oscillations of cylindrical plasma using Lagrangian formalism. In order to study the harmonic oscillations, the equations are linearized and the resulting equation for the displacement has been numerically solved. For situations present in thermonuclear reactors, the presence of axial magnetic field is found necessary to make the periods of oscillation to become comparable with the time required for the thermonuclear reactions to set in. A detailed analysis of the anharmonic oscillations reveals that the significant interaction is between the first and the second mode. The fundamental period of anharmonic oscillation is more than the corresponding period of harmonic oscillations by 9·2%. Graphs have been drawn for the amplitudes of relative variations in density and magnetic field and of the time-varying part of anharmonic oscillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Krishnan's reciprocity theorem in colloid optics, ρ{variant}u=1+l/ρ{variant}h/1+1/ρ{variant}v is generalised for the case when the scattering medium is subjected to an external orienting field. It is shown theoretically that a general relation of the type IBA=I′AB results in this case, where IBA is the intensity of the component of the scattered light having its electric vector inclined at an angle B to the vertical with the incident light polarised at an angle A to the vertical, the external field direction being parallel to the incident beam. I′AB is the corresponding intensity with the magnetic field parallel of the scattered ray. Experimental verification of the above generalisation is also given.