946 resultados para Machiavelli, Nic 1469-1527.
Resumo:
We developed and optimized 15 polymorphic microsatellite loci in the jungle perch, Kuhlia rupestris. Loci were screened in a single population (n = 24) from Fraser Island, Queensland, Australia. Number of alleles per locus ranged from 3 to 19 and observed heterozygosity from 0.25 to 1. No significant linkage disequilibrium was detected between any pair of loci. Genotype proportions for these loci in the population sampled were in Hardy–Weinberg equilibrium.
Resumo:
N-[2-Naphthyl]-glycine hydrazide has been shown for the first time as a potent inhibitor of the DNA-dependent RNA polymerase (EC 2.7.7.6) of Mycobacterium tuberculosis H37Rv. At a concentration of 10 to the power -9 M, the compound shows maximum inhibition of the enzyme, the inhibition being less at higher concentrations. It is suggested that the novel type of inhibition pattern may be due to hydrophobic interactions occurring between the molecules of the compound at higher concentrations. The finding that there is a shift in the max of the compound could also account for this phenomenon. The effect of this compound was also tested on DNA-dependent RNA polymerases from an eukaryotic fungus, Microsporum canis. At a concentration of 10 to the power-9 M it inhibits RNA polymerase II (32 percent) but not RNA polymerases I and III.
Resumo:
Wood is an important biological resource which contributes to nutrient and hydrology cycles through ecosystems, and provides structural support at the plant level. Thousands of genes are involved in wood development, yet their effects on phenotype are not well understood. We have exploited the low genomic linkage disequilibrium (LD) and abundant phenotypic variation of forest trees to explore allelic diversity underlying wood traits in an association study. Candidate gene allelic diversity was modelled against quantitative variation to identify SNPs influencing wood properties, growth and disease resistance across three populations of Corymbia citriodora subsp. variegata, a forest tree of eastern Australia. Nine single nucleotide polymorphism (SNP) associations from six genes were identified in a discovery population (833 individuals). Associations were subsequently tested in two smaller populations (130160 individuals), validating our findings in three cases for actin 7 (ACT7) and COP1 interacting protein 7 (CIP7). The results imply a functional role for these genes in mediating wood chemical composition and growth, respectively. A flip in the effect of ACT7 on pulp yield between populations suggests gene by environment interactions are at play. Existing evidence of gene function lends strength to the observed associations, and in the case of CIP7 supports a role in cortical photosynthesis.
Resumo:
Tillering determines the plant size of sorghum (Sorghum bicolor) and an understanding of its regulation is important to match genotypes to prevalent growing conditions in target production environments. The aim of this study was to determine the physiological and environmental regulation of variability in tillering among sorghum genotypes, and to develop a framework for this regulation. * Diverse sorghum genotypes were grown in three experiments with contrasting temperature, radiation and plant density to create variation in tillering. Data on phenology, tillering, and leaf and plant size were collected. A carbohydrate supply/demand (S/D) index that incorporated environmental and genotypic parameters was developed to represent the effects of assimilate availability on tillering. Genotypic differences in tillering not explained by this index were defined as propensity to tiller (PTT) and probably represented hormonal effects. * Genotypic variation in tillering was associated with differences in leaf width, stem diameter and PTT. The S/D index captured most of the environmental effects on tillering and PTT most of the genotypic effects. * A framework that captures genetic and environmental regulation of tillering through assimilate availability and PTT was developed, and provides a basis for the development of a model that connects genetic control of tillering to its phenotypic consequences.
Resumo:
* Plant response to drought is complex, so that traits adapted to a specific drought type can confer disadvantage in another drought type. Understanding which type(s) of drought to target is of prime importance for crop improvement. * Modelling was used to quantify seasonal drought patterns for a check variety across the Australian wheatbelt, using 123 yr of weather data for representative locations and managements. Two other genotypes were used to simulate the impact of maturity on drought pattern. * Four major environment types summarized the variability in drought pattern over time and space. Severe stress beginning before flowering was common (44% of occurrences), with (24%) or without (20%) relief during grain filling. High variability occurred from year to year, differing with geographical region. With few exceptions, all four environment types occurred in most seasons, for each location, management system and genotype. * Applications of such environment characterization are proposed to assist breeding and research to focus on germplasm, traits and genes of interest for target environments. The method was applied at a continental scale to highly variable environments and could be extended to other crops, to other drought-prone regions around the world, and to quantify potential changes in drought patterns under future climates.
Resumo:
Negative impedance converters (NIC's) may be used to realize negative driving-point impedances. The effect of the nonideal characteristics of the operational amplifier such as finite frequencydependent gain and output impedance on the performance of the negative impedances is analyzed. Detailed equivalent circuits showing the additional positive or negative inductive impedances due to the nonideal characteristics are given for negative resistance and negative capacitance realizations, and their relative performances are compared. The experimental results confirm the validity of the equivalent circuits. The effect of the slew rate of the operational amplifier on the maximum signal-handling capability (SHC) of the negative impedances at high frequencies is studied. Practical design considerations for achieving wider bandwidth as well as improved SHC are discussed.
Resumo:
- Purpose This paper aims to investigate how direct mail consumption contributes to brand relationship quality. Store flyers and other direct mailings continue to play a significant role in many companies’ communication strategies. Research on this topic predominantly investigates driving store traffic and sales. Less is known regarding the consumer side, such as the value that consumers may derive from the consumption of direct mailings and the effects of such a value on brand relationship quality. To address this limitation, this paper tests a causal model of the contribution of direct mail value to brand commitment, drawing on a value framework that integrates social theory of engagement regimes and literature on experiential customer value. - Design/methodology/approach The empirical work of this paper is based on a rigorous four-study mixed methods design, involving qualitative study, confirmatory factor analysis and partial least squares structural modeling. - Findings The authors develop two second-order formatively designed scales – familiar value and planned value scales – that illustrate the role of engagement regimes in consumer behavior. Although both types of value contribute equally to direct mail attachment, they exert contrasting effects on other mediational consumer responses, such as reading and gratitude. Finally, the proposed theoretical model appears to be robust in predicting customers’ brand commitment. - Research limitations/implications This study provides new insights into the research on consumer value and brand relational communication. - Originality/value This study is the first to consider consumer benefits from the social perspective of engagement regimes.
Resumo:
Mental retardation due to fragile X syndrome is one of the genetic disorders caused by tripler repeat expansion, CGG repeat involved in this disease is known to exhibit polymorphism even among normal individuals. Here we describe the development of suitable probes for detection of polymorphism in CGG repeat at FMR1 locus as well as the diagnosis of fragile X syndrome. Using these methods polymorphism at the FMR1 locus has been examined in 161 individuals. Ninety eight patients with unclassified mental retardation were examined, of whom 7 were found to have the expanded (CGG) allele at the FMR1 locus, The hybridization pattern for two patients has been presented as representative data.
Resumo:
Tactile sensation plays an important role in everyday life. While the somatosensory system has been studied extensively, the majority of information has come from studies using animal models. Recent development of high-resolution anatomical and functional imaging techniques has enabled the non-invasive study of human somatosensory cortex and thalamus. This thesis provides new insights into the functional organization of the human brain areas involved in tactile processing using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). The thesis also demonstrates certain optimizations of MEG and fMRI methods. Tactile digit stimulation elicited stimulus-specific responses in a number of brain areas. Contralateral activation was observed in somatosensory thalamus (Study II), primary somatosensory cortex (SI; I, III, IV), and post-auditory belt area (III). Bilateral activation was observed in secondary somatosensory cortex (SII; II, III, IV). Ipsilateral activation was found in the post-central gyrus (area 2 of SI cortex; IV). In addition, phasic deactivation was observed within ipsilateral SI cortex and bilateral primary motor cortex (IV). Detailed investigation of the tactile responses demonstrated that the arrangement of distal-proximal finger representations in area 3b of SI in humans is similar to that found in monkeys (I). An optimized MEG approach was sufficient to resolve such fine detail in functional organization. The SII region appeared to contain double representations for fingers and toes (II). The detection of activations in the SII region and thalamus improved at the individual and group levels when cardiac-gated fMRI was used (II). Better detection of body part representations at the individual level is an important improvement, because identification of individual representations is crucial for studying brain plasticity in somatosensory areas. The posterior auditory belt area demonstrated responses to both auditory and tactile stimuli (III), implicating this area as a physiological substrate for the auditory-tactile interaction observed in earlier psychophysical studies. Comparison of different smoothing parameters (III) demonstrated that proper evaluation of co-activation should be based on individual subject analysis with minimal or no smoothing. Tactile input consistently influenced area 3b of the human ipsilateral SI cortex (IV). The observed phasic negative fMRI response is proposed to result from interhemispheric inhibition via trans-callosal connections. This thesis contributes to a growing body of human data suggesting that processing of tactile stimuli involves multiple brain areas, with different spatial patterns of cortical activation for different stimuli.
Resumo:
Background Advances in cancer diagnosis and treatment have significantly improved survival rates, through their subsequent health needs are often not adequately addressed by current health services. National Health and Medical Research Council (NHMRC) Partnerships Project awarded a national collaborative project to develop, trial and evaluate clinical benefits and cost effectiveness of an e-health enabled structured health promotion intervention - The Women’s Wellness after Cancer Program (WWACP). The aim of this e-health enabled multimodal intervention is to improve health related quality of life in women previously treated for target cancers. Aim The WWACP is a 12-week web based, interactive, holistic program. Primary outcomes for this project are to promote a positive change in health-related quality of life (HRQoL) and reduction in Body Mass Index (BMI) in the women undertaking WWACP compared to women who receive usual care. Secondary outcomes include managing other side effects of cancer treatment through evidence-based nutrition and exercise practices, dealing with stress, sleep, menopause and sexuality issues. Methods The single-blinded multi-center randomized controlled trial recruited a toatl of 330 women within 24 months of completion of chemotherapy and /or radiotherapy. Women were randomly assigned to either a usual care or intervention group. Women provided with the intervention were provided with an interactive iBook and journal, web interface, and three virtual consultations by experienced cancer nurses. A variety of methods were utilized, to enable positive self- efficacy and lifestyle changes. These include online coaching with a registered nurse trained in the intervention, plus written educational and health promotional information. The program has been delivered through the e-health enabled interfaces, which enables virtual delivery via desktop and mobile computing devices. Importantly this enables accessibility for rural and regional women in Australia who are frequently geographically disadvantaged in terms of health care provision. Results Research focusing on alternative methods of delivering post treatment / or survivorship care in cancer utilizing web based interfaces is limited, but emerging evidence suggests that Internet interventions can increase psychological and physical wellbeing in cancer patients. The WWACP trial aims to establish the effectiveness of delivery of the program in terms of positive patient outcomes and cost effective, flexibility. The trial will be completed in September and results will be presented at the conference. Conclusions Women after acute hematological, breast and gynecological cancer treatments demonstrate good cancer survival rates and face residual health problems which are amenable to behavioral interventions. The conclusion of active treatment is a key 'teachable moment' in which sustainable positive lifestyle change can be achieved if patients receive education and psychological support which targets key treatment related health problems and known chronic disease risk factors.
Resumo:
Plasmodium falciparum causes the most severe form of malaria that is fatal in many cases. Emergence of drug resistant strains of P. falciparum requires that new drug targets be-identified. This review considers in detail enzymes of the glycolytic pathway, purine salvage pathway, pyrimidine biosynthesis and proteases involved in catabolism of haemoglobin. Structural features of P. falciparum triosephosphate isomerase which could be exploited for parasite specific drug development have been highlighted. Utility of P. falciparum hypoxanthine-guanine-phosphoribosyltransferase, adenylosuccinate synthase, dihydroorotate dehydrogenase, thymidylate synthase-dihydrofolate reductase, cysteine and aspartic proteases have been elaborated in detail. The review also briefly touches upon other potential targets in P. falciparum
Resumo:
Background & objectives: Periplasmic copper and zinc superoxide dismutase (Cu,Zn-SOD or SodC) is an important component of the antioxidant shield which protects bacteria from the phagocytic oxidative burst. Cu,Zn-SODs protect Gram-negative bacteria against oxygen damage which have also been shown to contribute to the pathogenicity of these bacterial species. We report the presence of SodC in drug resistant Salmonella sp. isolated from patients suffering from enteric fever. Further sodC was amplified, cloned into Escherichia coli and the nucleotide sequence and amino acid sequence homology were compared with the standard strain Salmonella Typhimurium 14028. Methods: Salmonella enterica serovar Typhi (S. Typhi) and Salmonellaenterica serovar Paratyphi (S. Paratyphi) were isolated and identified from blood samples of the patients. The isolates were screened for the presence of Cu, Zn-SOD by PAGE using KCN as inhibitor of Cu,Zn-SOD. The gene (sodC) was amplified by PCR, cloned and sequenced. The nucleotide and amino acid sequences of sodC were compared using CLUSTAL X.Results: SodC was detected in 35 per cent of the Salmonella isolates. Amplification of the genomic DNA of S. Typhi and S. Paratyphi with sodC specific primers resulted in 519 and 515 bp amplicons respectively. Single mutational difference at position 489 was observed between thesodC of S. Typhi and S. Paratyphi while they differed at 6 positions with the sodC of S. Typhimurium 14028. The SodC amino acid sequences of the two isolates were homologous but 3 amino acid difference was observed with that of standard strain S. Typhimurium 14028.Interpretation & conclusions: The presence of SodC in pathogenic bacteria could be a novel candidate as phylogenetic marker.