958 resultados para MIP Mathematical Programming Job Shop Scheduling
Resumo:
We present new metaheuristics for solving real crew scheduling problemsin a public transportation bus company. Since the crews of thesecompanies are drivers, we will designate the problem by the bus-driverscheduling problem. Crew scheduling problems are well known and severalmathematical programming based techniques have been proposed to solvethem, in particular using the set-covering formulation. However, inpractice, there exists the need for improvement in terms of computationalefficiency and capacity of solving large-scale instances. Moreover, thereal bus-driver scheduling problems that we consider can present variantaspects of the set covering, as for example a different objectivefunction, implying that alternative solutions methods have to bedeveloped. We propose metaheuristics based on the following approaches:GRASP (greedy randomized adaptive search procedure), tabu search andgenetic algorithms. These metaheuristics also present some innovationfeatures based on and genetic algorithms. These metaheuristics alsopresent some innovation features based on the structure of the crewscheduling problem, that guide the search efficiently and able them tofind good solutions. Some of these new features can also be applied inthe development of heuristics to other combinatorial optimizationproblems. A summary of computational results with real-data problems ispresented.
Resumo:
The aim of this project is to get used to another kind of programming. Since now, I used very complex programming languages to develop applications or even to program microcontrollers, but PicoCricket system is the evidence that we don’t need so complex development tools to get functional devices. PicoCricket system is the clear example of simple programming to make devices work the way we programmed it. There’s an easy but effective way to program small, devices just saying what we want them to do. We cannot do complex algorithms and mathematical operations but we can program them in a short time. Nowadays, the easier and faster we produce, the more we earn. So the tendency is to develop fast, cheap and easy, and PicoCricket system can do it.
Resumo:
We present some results attained with different algorithms for the Fm|block|Cmax problem using as experimental data the well-known Taillard instances.
Resumo:
Abstract
Resumo:
In this work, we present an integral scheduling system for non-dedicated clusters, termed CISNE-P, which ensures the performance required by the local applications, while simultaneously allocating cluster resources to parallel jobs. Our approach solves the problem efficiently by using a social contract technique. This kind of technique is based on reserving computational resources, preserving a predetermined response time to local users. CISNE-P is a middleware which includes both a previously developed space-sharing job scheduler and a dynamic coscheduling system, a time sharing scheduling component. The experimentation performed in a Linux cluster shows that these two scheduler components are complementary and a good coordination improves global performance significantly. We also compare two different CISNE-P implementations: one developed inside the kernel, and the other entirely implemented in the user space.
Resumo:
The aim of this project is to get used to another kind of programming. Since now, I used very complex programming languages to develop applications or even to program microcontrollers, but PicoCricket system is the evidence that we don’t need so complex development tools to get functional devices. PicoCricket system is the clear example of simple programming to make devices work the way we programmed it. There’s an easy but effective way to programs mall devices just saying what we want them to do. We cannot do complex algorithms and mathematical operations but we can program them in a short time. Nowadays, the easier and faster we produce, the more we earn. So the tendency is to develop fast, cheap and easy, and PicoCricket system can do it.
Resumo:
The development of correct programs is a core problem in computer science. Although formal verification methods for establishing correctness with mathematical rigor are available, programmers often find these difficult to put into practice. One hurdle is deriving the loop invariants and proving that the code maintains them. So called correct-by-construction methods aim to alleviate this issue by integrating verification into the programming workflow. Invariant-based programming is a practical correct-by-construction method in which the programmer first establishes the invariant structure, and then incrementally extends the program in steps of adding code and proving after each addition that the code is consistent with the invariants. In this way, the program is kept internally consistent throughout its development, and the construction of the correctness arguments (proofs) becomes an integral part of the programming workflow. A characteristic of the approach is that programs are described as invariant diagrams, a graphical notation similar to the state charts familiar to programmers. Invariant-based programming is a new method that has not been evaluated in large scale studies yet. The most important prerequisite for feasibility on a larger scale is a high degree of automation. The goal of the Socos project has been to build tools to assist the construction and verification of programs using the method. This thesis describes the implementation and evaluation of a prototype tool in the context of the Socos project. The tool supports the drawing of the diagrams, automatic derivation and discharging of verification conditions, and interactive proofs. It is used to develop programs that are correct by construction. The tool consists of a diagrammatic environment connected to a verification condition generator and an existing state-of-the-art theorem prover. Its core is a semantics for translating diagrams into verification conditions, which are sent to the underlying theorem prover. We describe a concrete method for 1) deriving sufficient conditions for total correctness of an invariant diagram; 2) sending the conditions to the theorem prover for simplification; and 3) reporting the results of the simplification to the programmer in a way that is consistent with the invariantbased programming workflow and that allows errors in the program specification to be efficiently detected. The tool uses an efficient automatic proof strategy to prove as many conditions as possible automatically and lets the remaining conditions be proved interactively. The tool is based on the verification system PVS and i uses the SMT (Satisfiability Modulo Theories) solver Yices as a catch-all decision procedure. Conditions that were not discharged automatically may be proved interactively using the PVS proof assistant. The programming workflow is very similar to the process by which a mathematical theory is developed inside a computer supported theorem prover environment such as PVS. The programmer reduces a large verification problem with the aid of the tool into a set of smaller problems (lemmas), and he can substantially improve the degree of proof automation by developing specialized background theories and proof strategies to support the specification and verification of a specific class of programs. We demonstrate this workflow by describing in detail the construction of a verified sorting algorithm. Tool-supported verification often has little to no presence in computer science (CS) curricula. Furthermore, program verification is frequently introduced as an advanced and purely theoretical topic that is not connected to the workflow taught in the early and practically oriented programming courses. Our hypothesis is that verification could be introduced early in the CS education, and that verification tools could be used in the classroom to support the teaching of formal methods. A prototype of Socos has been used in a course at Åbo Akademi University targeted at first and second year undergraduate students. We evaluate the use of Socos in the course as part of a case study carried out in 2007.
Resumo:
Programming and mathematics are core areas of computer science (CS) and consequently also important parts of CS education. Introductory instruction in these two topics is, however, not without problems. Studies show that CS students find programming difficult to learn and that teaching mathematical topics to CS novices is challenging. One reason for the latter is the disconnection between mathematics and programming found in many CS curricula, which results in students not seeing the relevance of the subject for their studies. In addition, reports indicate that students' mathematical capability and maturity levels are dropping. The challenges faced when teaching mathematics and programming at CS departments can also be traced back to gaps in students' prior education. In Finland the high school curriculum does not include CS as a subject; instead, focus is on learning to use the computer and its applications as tools. Similarly, many of the mathematics courses emphasize application of formulas, while logic, formalisms and proofs, which are important in CS, are avoided. Consequently, high school graduates are not well prepared for studies in CS. Motivated by these challenges, the goal of the present work is to describe new approaches to teaching mathematics and programming aimed at addressing these issues: Structured derivations is a logic-based approach to teaching mathematics, where formalisms and justifications are made explicit. The aim is to help students become better at communicating their reasoning using mathematical language and logical notation at the same time as they become more confident with formalisms. The Python programming language was originally designed with education in mind, and has a simple syntax compared to many other popular languages. The aim of using it in instruction is to address algorithms and their implementation in a way that allows focus to be put on learning algorithmic thinking and programming instead of on learning a complex syntax. Invariant based programming is a diagrammatic approach to developing programs that are correct by construction. The approach is based on elementary propositional and predicate logic, and makes explicit the underlying mathematical foundations of programming. The aim is also to show how mathematics in general, and logic in particular, can be used to create better programs.
Resumo:
The maintenance of electric distribution network is a topical question for distribution system operators because of increasing significance of failure costs. In this dissertation the maintenance practices of the distribution system operators are analyzed and a theory for scheduling maintenance activities and reinvestment of distribution components is created. The scheduling is based on the deterioration of components and the increasing failure rates due to aging. The dynamic programming algorithm is used as a solving method to maintenance problem which is caused by the increasing failure rates of the network. The other impacts of network maintenance like environmental and regulation reasons are not included to the scope of this thesis. Further the tree trimming of the corridors and the major disturbance of the network are not included to the problem optimized in this thesis. For optimizing, four dynamic programming models are presented and the models are tested. Programming is made in VBA-language to the computer. For testing two different kinds of test networks are used. Because electric distribution system operators want to operate with bigger component groups, optimal timing for component groups is also analyzed. A maintenance software package is created to apply the presented theories in practice. An overview of the program is presented.
Resumo:
With the shift towards many-core computer architectures, dataflow programming has been proposed as one potential solution for producing software that scales to a varying number of processor cores. Programming for parallel architectures is considered difficult as the current popular programming languages are inherently sequential and introducing parallelism is typically up to the programmer. Dataflow, however, is inherently parallel, describing an application as a directed graph, where nodes represent calculations and edges represent a data dependency in form of a queue. These queues are the only allowed communication between the nodes, making the dependencies between the nodes explicit and thereby also the parallelism. Once a node have the su cient inputs available, the node can, independently of any other node, perform calculations, consume inputs, and produce outputs. Data ow models have existed for several decades and have become popular for describing signal processing applications as the graph representation is a very natural representation within this eld. Digital lters are typically described with boxes and arrows also in textbooks. Data ow is also becoming more interesting in other domains, and in principle, any application working on an information stream ts the dataflow paradigm. Such applications are, among others, network protocols, cryptography, and multimedia applications. As an example, the MPEG group standardized a dataflow language called RVC-CAL to be use within reconfigurable video coding. Describing a video coder as a data ow network instead of with conventional programming languages, makes the coder more readable as it describes how the video dataflows through the different coding tools. While dataflow provides an intuitive representation for many applications, it also introduces some new problems that need to be solved in order for data ow to be more widely used. The explicit parallelism of a dataflow program is descriptive and enables an improved utilization of available processing units, however, the independent nodes also implies that some kind of scheduling is required. The need for efficient scheduling becomes even more evident when the number of nodes is larger than the number of processing units and several nodes are running concurrently on one processor core. There exist several data ow models of computation, with different trade-offs between expressiveness and analyzability. These vary from rather restricted but statically schedulable, with minimal scheduling overhead, to dynamic where each ring requires a ring rule to evaluated. The model used in this work, namely RVC-CAL, is a very expressive language, and in the general case it requires dynamic scheduling, however, the strong encapsulation of dataflow nodes enables analysis and the scheduling overhead can be reduced by using quasi-static, or piecewise static, scheduling techniques. The scheduling problem is concerned with nding the few scheduling decisions that must be run-time, while most decisions are pre-calculated. The result is then an, as small as possible, set of static schedules that are dynamically scheduled. To identify these dynamic decisions and to find the concrete schedules, this thesis shows how quasi-static scheduling can be represented as a model checking problem. This involves identifying the relevant information to generate a minimal but complete model to be used for model checking. The model must describe everything that may affect scheduling of the application while omitting everything else in order to avoid state space explosion. This kind of simplification is necessary to make the state space analysis feasible. For the model checker to nd the actual schedules, a set of scheduling strategies are de ned which are able to produce quasi-static schedulers for a wide range of applications. The results of this work show that actor composition with quasi-static scheduling can be used to transform data ow programs to t many different computer architecture with different type and number of cores. This in turn, enables dataflow to provide a more platform independent representation as one application can be fitted to a specific processor architecture without changing the actual program representation. Instead, the program representation is in the context of design space exploration optimized by the development tools to fit the target platform. This work focuses on representing the dataflow scheduling problem as a model checking problem and is implemented as part of a compiler infrastructure. The thesis also presents experimental results as evidence of the usefulness of the approach.
Resumo:
I am a part-time graduate student who works in industry. This study is my narrative about how six workers and I describe shop-floor learning activities, that is learning activities that occur where work is done, outside a classroom. Because this study is narrative inquiry, you wilileam about me, the narrator, more than you would in a more conventional study. This is a common approach in narrative inquiry and it is important because my intentions shape the way that I tell these six workers' stories. I developed a typology of learning activities by synthesizing various theoretical frameworks. This typology categorizes shop-floor learning activities into five types: onthe- job training, participative learning, educational advertising, incidental learning, and self-directed learning. Although learning can occur in each of these activities in isolation, it is often comprised of a mixture of these activities. The literature review contains a number of cases that have been developed from situations described in the literature. These cases are here to make the similarities and differences between the types of learning activities that they represent more understandable to the reader and to ground the typology in practice as well as in theory. The findings are presented as reader's theatre, a dramatic presentation of these workers' narratives. The workers tell us that learning involves "being shown," and if this is not done properly they "learn the hard way." I found that many of their best case lean1ing activities involved on-the-job training, participative learning, incidentalleaming, and self-directed learning. Worst case examples were typically lacking in properly designed and delivered participative learning activities and to a lesser degree lacking carefully planned and delivered on-the-job training activities. Included are two reflective chapters that describe two cases: Learning "Engels" (English), and Learning to Write. In these chapters you will read about how I came to see that my own shop-floor learning-learning to write this thesis-could be enhanced through participative learning activities. I came to see my thesis supervisor as not only my instructor who directed and judged my learning activities, but also as a more experienced researcher who was there to participate in this process with me and to help me begin to enter the research community. Shop-floor learning involves learners and educators participating in multistranded learning activities, which require an organizational factor of careful planning and delivery. As with learning activities, which can be multi-stranded, so too, there can be multiple orientations to learning on the shop floor. In our stories, you will see that these six workers and I didn't exhibit just one orientation to learning in our stories. Our stories demonstrate that we could be behaviorist and cognitivist and humanist and social learners and constructivist in our orientation to learning. Our stories show that learning is complex and involves multiple strands, orientations, and factors. Our stories show that learning narratives capture the essence of learning-the learners, the educators, the learning activities, the organizational factors, and the learning orientations. Learning narratives can help learners and educators make sense of shop-floor learning.
Resumo:
Ce projet de recherche a été réalisé avec la collaboration de FPInnovations. Une part des travaux concernant le problème de récolte chilien a été effectuée à l'Instituto Sistemas Complejos de Ingeniería (ISCI) à Santiago (Chili).
Resumo:
Sowohl die Ressourcenproblematik als auch die drohenden Ausmaße der Klimaänderung lassen einen Umstieg auf andere Energiequellen langfristig unausweichlich erscheinen und mittelfristig als dringend geboten. Unabhängig von der Frage, auf welchem Niveau sich der Energiebedarf stabilisieren lässt, bleibt dabei zu klären, welche Möglichkeiten sich aus technischer und wirtschaftlicher Sicht in Zukunft zur Deckung unseres Energiebedarfs anbieten. Eine aussichtsreiche Option besteht in der Nutzung regenerativer Energien in ihrer ganzen Vielfalt. Die Arbeit "Szenarien zur zukünftigen Stromversorgung, kostenoptimierte Variationen zur Versorgung Europas und seiner Nachbarn mit Strom aus erneuerbaren Energien" konzentriert sich mit der Stromversorgung auf einen Teilaspekt der Energieversorgung, der zunehmend an Wichtigkeit gewinnt und als ein Schlüssel zur nachhaltigen Energieversorgung interpretiert werden kann. Die Stromversorgung ist heute weltweit für etwa die Hälfte des anthropogenen CO2-Ausstoßes verantwortlich. In dieser Arbeit wurden anhand verschiedener Szenarien Möglichkeiten einer weitgehend CO2–neutralen Stromversorgung für Europa und seine nähere Umgebung untersucht, wobei das Szenariogebiet etwa 1,1 Mrd. Einwohner und einen Stromverbrauch von knapp 4000 TWh/a umfasst. Dabei wurde untersucht, wie die Stromversorgung aufgebaut sein sollte, damit sie möglichst kostengünstig verwirklicht werden kann. Diese Frage wurde beispielsweise für Szenarien untersucht, in denen ausschließlich heute marktverfügbare Techniken berücksichtigt wurden. Auch der Einfluss der Nutzung einiger neuer Technologien, die bisher noch in Entwicklung sind, auf die optimale Gestaltung der Stromversorgung, wurde anhand einiger Beispiele untersucht. Die Konzeption der zukünftigen Stromversorgung sollte dabei nach Möglichkeit objektiven Kriterien gehorchen, die auch die Vergleichbarkeit verschiedener Versorgungsansätze gewährleisten. Dafür wurde ein Optimierungsansatz gewählt, mit dessen Hilfe sowohl bei der Konfiguration als auch beim rechnerischen Betrieb des Stromversorgungssystems weitgehend auf subjektive Entscheidungsprozesse verzichtet werden kann. Die Optimierung hatte zum Ziel, für die definierte möglichst realitätsnahe Versorgungsaufgabe den idealen Kraftwerks- und Leitungspark zu bestimmen, der eine kostenoptimale Stromversorgung gewährleistet. Als Erzeugungsoptionen werden dabei u.a. die Nutzung Regenerativer Energien durch Wasserkraftwerke, Windenergiekonverter, Fallwindkraftwerke, Biomassekraftwerke sowie solare und geothermische Kraftwerke berücksichtigt. Abhängig von den gewählten Randbedingungen ergaben sich dabei unterschiedliche Szenarien. Das Ziel der Arbeit war, mit Hilfe unterschiedlicher Szenarien eine breite Basis als Entscheidungsgrundlage für zukünftige politische Weichenstellungen zu schaffen. Die Szenarien zeigen Optionen für eine zukünftige Gestaltung der Stromversorgung auf, machen Auswirkungen verschiedener – auch politischer – Rahmenbedingungen deutlich und stellen so die geforderte Entscheidungsgrundlage bereit. Als Grundlage für die Erstellung der Szenarien mussten die verschiedenen Potentiale erneuerbarer Energien in hoher zeitlicher und räumlicher Auflösung ermittelt werden, mit denen es erstmals möglich war, die Fragen einer großräumigen regenerativen Stromversorgung ohne ungesicherte Annahmen anhand einer verlässlichen Datengrundlage anzugehen. Auch die Charakteristika der verschiedensten Energiewandlungs- und Transportsysteme mussten studiert werden und sind wie deren Kosten und die verschiedenen Potentiale in der vorliegenden Arbeit ausführlich diskutiert. Als Ausgangsszenario und Bezugspunkt dient ein konservatives Grundszenario. Hierbei handelt es sich um ein Szenario für eine Stromversorgung unter ausschließlicher Nutzung erneuerbarer Energien, die wiederum ausschließlich auf heute bereits entwickelte Technologien zurückgreift und dabei für alle Komponenten die heutigen Kosten zugrundelegt. Dieses Grundszenario ist dementsprechend auch als eine Art konservative Worst-Case-Abschätzung für unsere Zukunftsoptionen bei der regenerativen Stromversorgung zu verstehen. Als Ergebnis der Optimierung basiert die Stromversorgung beim Grundszenario zum größten Teil auf der Stromproduktion aus Windkraft. Biomasse und schon heute bestehende Wasserkraft übernehmen den überwiegenden Teil der Backup-Aufgaben innerhalb des – mit leistungsstarker HGÜ (Hochspannungs–Gleichstrom–Übertragung) verknüpften – Stromversorgungsgebiets. Die Stromgestehungskosten liegen mit 4,65 €ct / kWh sehr nahe am heute Üblichen. Sie liegen niedriger als die heutigen Preisen an der Strombörse. In allen Szenarien – außer relativ teuren, restriktiv ”dezentralen” unter Ausschluss großräumig länderübergreifenden Stromtransports – spielt der Stromtransport eine wichtige Rolle. Er wird genutzt, um Ausgleichseffekte bei der dargebotsabhängigen Stromproduktion aus erneuerbaren Quellen zu realisieren, gute kostengünstige Potentiale nutzbar zu machen und um die Speicherwasserkraft sowie die dezentral genutzte Biomasse mit ihrer Speicherfähigkeit für großräumige Backup-Aufgaben zu erschließen. Damit erweist sich der Stromtransport als einer der Schlüssel zu einer kostengünstigen Stromversorgung. Dies wiederum kann als Handlungsempfehlung bei politischen Weichenstellungen interpretiert werden, die demnach gezielt auf internationale Kooperation im Bereich der Nutzung erneuerbarer Energien setzen und insbesondere den großräumigen Stromtransport mit einbeziehen sollten. Die Szenarien stellen detaillierte und verlässliche Grundlagen für wichtige politische und technologische Zukunftsentscheidungen zur Verfügung. Sie zeigen, dass bei internationaler Kooperation selbst bei konservativen Annahmen eine rein regenerative Stromversorgung möglich ist, die wirtschaftlich ohne Probleme zu realisieren wäre und verweisen den Handlungsbedarf in den Bereich der Politik. Eine wesentliche Aufgabe der Politik läge darin, die internationale Kooperation zu organisieren und Instrumente für eine Umgestaltung der Stromversorgung zu entwickeln. Dabei kann davon ausgegangen werden, dass nicht nur ein sinnvoller Weg zu einer CO2–neutralen Stromversorgung beschritten würde, sondern sich darüber hinaus ausgezeichnete Entwicklungsperspektiven für die ärmeren Nachbarstaaten der EU und Europas eröffnen.
Resumo:
We address the problem of jointly determining shipment planning and scheduling decisions with the presence of multiple shipment modes. We consider long lead time, less expensive sea shipment mode, and short lead time but expensive air shipment modes. Existing research on multiple shipment modes largely address the short term scheduling decisions only. Motivated by an industrial problem where planning decisions are independent of the scheduling decisions, we investigate the benefits of integrating the two sets of decisions. We develop sequence of mathematical models to address the planning and scheduling decisions. Preliminary computational results indicate improved performance of the integrated approach over some of the existing policies used in real-life situations.
Resumo:
In multi-tasking systems when it is not possible to guarantee completion of all activities by specified times, the scheduling problem is not straightforward. Examples of this situation in real-time programming include the occurrence of alarm conditions and the buffering of output to peripherals in on-line facilities. The latter case is studied here with the hope of indicating one solution to the general problem.