967 resultados para MAJOR DIAGNOSTIC ANTIGEN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In establishing the memory B-cell population and maintaining self-tolerance during an immune response, apoptosis mediates the removal of early, low-affinity antibody-forming cells, unselected germinal center (GC) cells, and, potentially, self-reactive B cells. To address the role of the apoptosis-signaling cell surface molecule FAS in the B-cell response to antigen, we have examined the T-cell-dependent B-cell response to the carrier-conjugated hapten (4-hydroxy-3-nitrophenyl)acetyl (NP) in lpr mice in which the fas gene is mutated. High levels of FAS were expressed on normal GC B cells but the absence of FAS did not perturb the progressive decline in numbers of either GC B cells or extrafollicular antibody-forming cells. Furthermore, the rate of formation and eventual size of the NP-specific memory B-cell population in lpr mice were normal. The accumulation of cells with affinity-enhancing mutations and the appearance of high-affinity anti-NP IgG1 antibody in the serum were also normal in lpr mice. Thus, although high levels of FAS are expressed on GC B cells, FAS is not required for GC selection or for regulation of the major antigen-specific B-cell compartments. The results suggest that the size and composition of B-cell compartments in the humoral immune response are regulated by mechanisms that do not require FAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fas/APO-1 cytotoxic pathway plays an important role in the regulation of peripheral immunity. Recent evidence indicates that this regulatory function operates through deletion of activated T and B lymphocytes by CD4+ T cells expressing the Fas ligand. Because macrophages play a key role in peripheral immunity, we asked whether Fas was involved in T-cell-macrophage interactions. Two-color flow cytometry revealed that Fas receptor (FasR) was expressed on resting murine peritoneal macrophages. FasR expression was upregulated after activation of macrophages with cytokines or lipopolysaccharide, although only tumor necrosis factor-alpha rendered macrophages sensitive to anti-FasR antibody-mediated death. To determine the consequence of antigen presentation by macrophages to CD4+ T cells, macrophages were pulsed with antigen and then incubated with either Th1 or Th2 cell lines or clones. Th1, but not Th2, T cells induced lysis of 60-80% of normal macrophages, whereas macrophages obtained from mice with mutations in the FasR were totally resistant to Th1-mediated cytotoxicity. Macrophage cytotoxicity depended upon specific antigen recognition by T cells and was major histocompatibility complex restricted. These findings indicate that, in addition to deletion of activated lymphocytes, Fas plays an important role in deletion of activated macrophages after antigen presentation to Th1 CD4+ T cells. Failure to delete macrophages that constitutively present self-antigens may contribute to the expression of autoimmunity in mice deficient in FasR (lpr) or Fas ligand (gld).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invariant chain (Ii), a membrane glycoprotein, binds class II major histocompatibility complex (MHC) glycoproteins, probably via its class II-associated Ii peptide (CLIP) segment, and escorts them toward antigen-containing endosomal compartments. We find that a soluble, trimeric ectodomain of Ii expressed and purified from Escherichia coli blocks peptide binding to soluble HLA-DR1. Proteolysis indicates that Ii contains two structural domains. The C-terminal two-thirds forms an alpha-helical domain that trimerizes and interacts with empty HLA-DR1 molecules, augmenting rather than blocking peptide binding. The N-terminal one-third, which inhibits peptide binding, is proteolytically susceptible over its entire length. In the trimer, the N-terminal domains act independently with each CLIP segment exposed and free to bind an MHC class II molecule, while the C-terminal domains act as a trimeric unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of CD8+ cytotoxic T lymphocytes (CTLs) is desirable for immunization against many diseases, and recombinant-synthetic peptide antigens are now favored agents to use. However, a major problem is how to induce CTLs, which requires a T1-type response to such synthetic antigens. We report that T1-type (generating high CTL, low antibody) or T2-type (the reciprocal) responses can be induced by conjugation of the antigen to the carbohydrate polymer mannan: T1 responses are selected by using oxidizing conditions; T2 responses are selected by using reducing conditions for the conjugation. Using human MUC1 as a model antigen in mice, immunization with oxidized mannan-MUC1 fusion protein (ox-M-FP) led to complete tumor protection (challenge up to 5 x 10(7) MUC1+ tumor cells), CTLs, and a high CTL precursor (CTLp) frequency (1/6900), whereas immunization with reduced mannan-MUC1 FP (red-M-FP) led to poor protection after challenge with only 10(6) MUC1+ tumor cells, no CTLs, and a low CTLp frequency (1/87,800). Ox-M-FP selects for a T1 response (mediated here by CD8+ cells) with high interferon gamma (IFN-gamma) secretion, no interleukin 4 (IL-4), and a predominant IgG2a antibody response; red-M-FP selects for a T2-type response with IL-4 production and a high predominant IgG1 antibody response but no IFN-gamma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invariant chain (Ii) is an intracellular type II transmembrane glycoprotein that is associated with major histocompatibility complex class II molecules during biosynthesis. Ii exists in two alternatively spliced forms, p31 and p41. Both p31 and p41 facilitate folding of class II molecules, promote egress from the endoplasmic reticulum, prevent premature peptide binding, and enhance localization to proteolytic endosomal compartments that are thought to be the sites for Ii degradation, antigen processing, and class II-peptide association. In spite of the dramatic and apparently equivalent effects that p31 and p41 have on class II biosynthesis, the ability of invariant chain to enhance antigen presentation to T cells is mostly restricted to p41. Here we show that degradation of Ii leads to the generation of a 12-kDa amino-terminal fragment that in p41-positive, but not in p31-positive, cells remains associated with class II molecules for an extended time. Interestingly, we find that coexpression of the two isoforms results in a change in the pattern of p31 degradation such that endosomal processing of p31 also leads to extended association of a similar 12-kDa fragment with class II molecules. These data raise the possibility that p41 may have the ability to impart its pattern of proteolytic processing on p31 molecules expressed in the same cells. This would enable a small number of p41 molecules to modify the post-translational transport and/or processing of an entire cohort of class II-Ii complexes in a manner that could account for the unique ability of p41 to enhance antigen presentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential activation of CD4+ T-cell precursors in vivo leads to the development of effectors with unique patterns of lymphokine secretion. To investigate whether the differential pattern of lymphokine secretion is influenced by factors associated with either the display and/or recognition of the ligand, we have used a set of ligands with various class II binding affinities but unchanged T-cell specificity. The ligand that exhibited approximately 10,000-fold higher binding to I-Au considerably increased the frequency of interferon gamma-producing but not interleukin (IL) 4- or IL-5-secreting cells in vivo. Using an established ligand-specific, CD4+ T-cell clone secreting only IL-4, we also demonstrated that stimulation with the highest affinity ligand resulted in interferon gamma production in vitro. In contrast, ligands that demonstrated relatively lower class II binding induced only IL-4 secretion. These data suggest that the major histocompatibility complex binding affinity of antigenic determinants, leading to differential interactions at the T cell-antigen-presenting cell interface, can be crucial for the differential development of cytokine patterns in T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invariant chain (Ii) is a trimeric membrane protein which binds and stabilizes major histocompatibility complex class II heterodimers in the endoplasmic reticulum and lysosomal compartments of antigen-presenting cells. In concert with an intracellular class II-like molecule, HLA-DM, Ii seems to facilitate loading of conventional class II molecules with peptides before transport of the class II-peptide complex to the cell surface for recognition by T cells. The interaction of Ii with class II molecules is thought to be mediated in large part through a region of 24 amino acids (the class II-associated Ii peptide, CLIP) which binds as a cleaved moiety in the antigenic peptide-binding groove of class II molecules in HLA-DM-deficient cell lines. Here we use nuclear magnetic resonance techniques to demonstrate that a soluble recombinant Ii ectodomain contains significant disordered regions which probably include CLIP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mouse monoclonal antibody, G92.1.2, raised against guinea pig liver transglutaminase (TGase) recognizes an antigen present in primary mouse dermal fibroblasts. A filamentous pattern, bearing remarkable similarity to the vimentin intermediate filament (IF) network, is seen when these cells are fixed and processed for indirect immunofluorescence with the antibody. Double-label immunofluorescence reveals that the antigen reacting with the antibody colocalizes precisely with vimentin IF and that this colocalization is retained after the treatment of fibroblasts with colchicine, which induces a redistribution of the majority of IFs into perinuclear aggregates. These morphological observations are further supported by the finding that the protein reacting with G92.1.2 is retained in IF-enriched cytoskeletal preparations made by using nonionic detergent-containing high ionic strength solutions. Western blots of the IF fraction show that G92.1.2 recognizes a major band of approximately 280 kDa and does not cross react with vimentin. Furthermore, when the antibody is microinjected into live dermal fibroblasts, it causes a collapse of the vimentin IF network in the majority of injected cells. The results suggest that a form of TGase, or a TGase-related antigen, is closely associated with the vimentin IF network of primary cultures of mouse dermal fibroblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding of invariant chain to major histocompatibility complex (MHC) proteins is an important step in processing of MHC class II proteins and in antigen presentation. The question of how invariant chain can bind to all MHC class II proteins is central to understanding these processes. We have employed molecular modeling to predict the structure of class II-associated invariant chain peptide (CLIP)-MHC protein complexes and to ask whether the predicted mode of association could be general across all MHC class II proteins. CLIP fits identically into the MHC class II alleles HLA-DR3, I-Ak, I-Au, and I-Ad, with a consistent pattern of hydrogen bonds, contacts, and hydrophobic burial and without bad contacts. Our model predicts the burial of CLIP residues Met-91 and Met-99 in the deep P1 and P9 anchor pockets and other detailed interactions, which we have compared with available data. The predicted pattern of I-A allele-specific effects on CLIP binding is very similar to that observed experimentally by alanine-scanning mutations of CLIP. Together, these results indicate that CLIP may bind in a single, general way across products of MHC class II alleles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human melanoma cells can process the MAGE-1 gene product and present the processed nonapeptide EADPTGHSY on their major histocompatibility complex class I molecules, HLA-A1, as a determinant for cytolytic T lymphocytes (CTLs). Considering that autologous antigen presenting cells (APCs) pulsed with the synthetic nonapeptide might, therefore, be immunogenic, melanoma patients whose tumor cells express the MAGE-1 gene and who are HLA-A1+ were immunized with a vaccine made of cultured autologous APCs pulsed with the synthetic nonapeptide. Analyses of the nature of the in vivo host immune response to the vaccine revealed that the peptide-pulsed APCs are capable of inducing autologous melanoma-reactive and the nonapeptide-specific CTLs in situ at the immunization site and at distant metastatic disease sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinant adenoviruses are attractive vehicles for liver-directed gene therapy because of the high efficiency with which they transfer genes to hepatocytes in vivo. First generation recombinant adenoviruses deleted of E1 sequences also express recombinant and early and late viral genes, which lead to development of destructive cellular immune responses. Previous studies indicated that class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTLs) play a major role in eliminating virus-infected cells. The present studies utilize mouse models to evaluate the role of T-helper cells in the primary response to adenovirus-mediated gene transfer to the liver. In vivo ablation of CD4+ cells or interferon gamma (IFN-gamma) was sufficient to prevent the elimination of adenovirus-transduced hepatocytes, despite the induction of a measurable CTL response. Mobilization of an effective TH1 response as measured by in vitro proliferation assays was associated with substantial upregulation of MHC class I expression, an effect that was prevented in IFN-gamma-deficient animals. These results suggest that elimination of virus-infected hepatocytes in a primary exposure to recombinant adenovirus requires both induction of antigen-specific CTLs as well as sensitization of the target cell by TH1-mediated activation of MHC class I expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies have characterized the transmembrane signaling events initiated after T-cell antigen receptor recognition of major histocompatibility complex (MHC)-bound peptides. Yet, little is known about signal transduction from a set of MHC class I recognizing receptors on natural killer (NK) cells whose ligation dramatically inhibits NK cell-mediated killing. In this study we evaluated the influence of MHC recognition on the proximal signaling events in NK cells binding tumor targets. We utilized two experimental models where NK cell-mediated cytotoxicity was fully inhibited by the recognition of specific MHC class I molecules. NK cell binding to either class I-deficient or class I-transfected target cells initiated rapid protein tyrosine kinase activation. In contrast, whereas NK cell binding to class I-deficient targets led to inositol phosphate release and increased intracellular free calcium ([Ca2+]i), NK recognition of class I-bearing targets did not induce the activation of these phospholipase C-dependent signaling events. The recognition of class I by NK cells clearly had a negative regulatory effect since blocking this interaction using anti-class I F(ab')2 fragments increased inositol 1,4,5-trisphosphate release and [Ca2+]i and increased the lysis of the targets. These results suggest that one of the mechanisms by which NK cell recognition of specific MHC class I molecules can block the development of cell-mediated cytotoxicity is by inhibiting specific critical signaling events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intramuscular injection of plasmid DNA expression vectors encoding the three envelope proteins of the hepatitis B virus (HBV) induced humoral responses in C57BL/6 mice specific to several antigenic determinants of the viral envelope. The first antibodies appeared within 1-2 weeks after injection of DNA and included antibodies of the IgM isotype. Over the next few weeks, an IgM to IgG class switch occurred, indicating helper T-lymphocyte activity. Peak IgG titers were reached by 4-8 weeks after a single DNA injection and were maintained for at least 6 months without further DNA injections. The antibodies to the envelope proteins reacted with group- and subtype-specific antigenic determinants of the HBV surface antigen (HBsAg). Expression vectors encoding the major (S) and middle (preS2 plus S) envelope proteins induced antibodies specific to the S protein and preS2 domain, and preS2 antibodies were prominent at early time points. In general, the expression vectors induced humoral responses in mice that mimic those observed in humans during the course of natural HBV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.