992 resultados para MACROPHAGE ACTIVATION PHENOTYPE
Resumo:
The FUS1 tumor suppressor gene (TSG) has been found to be deficient in many human non-small cell lung cancer (NSCLC) tissue samples and cell lines (1,2,3). Studies have shown potent anti-tumor activity of FUS1 in animal models where FUS1 was delivered through a liposomal vector (4) and the use of FUS1 as a therapeutic agent is currently being studied in clinical human trials (5). Currently, the mechanisms of FUS1 activity are being investigated and my studies have shown that c-Abl tyrosine kinase is inhibited by the FUS1 TSG.^ Considering that many NSCLC cell lines are FUS1 deficient, my studies further identified that FUS1 deficient NSCLC cells have an activated c-Abl tyrosine kinase. C-Abl is a known proto-oncogene and while c-Abl kinase is tightly regulated in normal cells, constitutively active Abl kinase is known to contribute to the oncogenic phenotype in some types of hematopoietic cancers. My studies show that the active c-Abl kinase contributes to the oncogenicity of NSCLC cells, particularly in tumors that are deficient in FUS1, and that c-Abl may prove to be a viable target in NSCLC therapy.^ Current studies have shown that growth factor receptors play a role in NSCLC. Over-expression of the epidermal growth factor receptor (EGFR) plays a significant role in aggressiveness of NSCLC. Current late stage treatments include EFGR tyrosine kinase inhibitors or EGFR antibodies. Platelet-derived growth factor receptor (PDGFR) also has been shown to play a role in NSCLC. Of note, both growth factor receptors are known upstream activators of c-Abl kinase. My studies indicate that growth factor receptor simulation along deficiency in FUS1 expression contributes to the activation of c-Abl kinase in NSCLC cells. ^
Resumo:
Human peripheral blood monocytes (HPBM) were isolated by centrifugal elutriation from mononuclear cell enriched fractions after routine plateletapheresis and the relationship between maturation of HPBM to macrophage-like cells and activation for tumoricidal activity determined. HPBM were cultured for various times in RPMI 1640 supplemented with 5% pooled human AB serum and cytotoxicity to $\sp{125}$IUDR labeled A375M, a human melanoma cell line, and TNF-$\alpha$ release determined by cytolysis of actinomycin D treated L929 cells. Freshly isolated HPBM or those exposed to recombinant IFN-$\gamma$(1.0 U/ml) were not cytolytic and did not release TNF-$\alpha$ into culture supernatants. Exposure to bacterial lipopolysaccharide (LPS, 1.0 $\upsilon$g/ml) stimulated cytolytic activity and release of TNF-$\alpha$. Maximal release of TNF-$\alpha$ protein occurred at 8 hrs and returned to baseline by 72 hrs. Expression of TNF-$\alpha$ protein was determined by Western blotting. Neither freshly isolated nor IFN-$\gamma$ treated HPBM expressed TNF protein at any time during in vitro culture. LPS treated HPBM maximally expressed the 17KD TNF-$\alpha$ protein at 8 hrs, and protein was not detected after 36 hrs of in vitro culture. Expression of TNF-$\alpha$ mRNA was determined by Northern blotting. Freshly isolated HPBM express TNF-$\alpha$ mRNA which decays to basal levels by 6 hrs of in vitro culture. IFN-$\gamma$ treatment maintains TNF-$\alpha$ mRNA expression for up to 48 hrs of culture, after which it is undetectable. LPS induces TNF-$\alpha$ mRNA after 30 minutes of exposure with maximal accumulation occurring between 4 to 8 hrs. TNF mRNA was not detected in control HPBM at any time after 6 hrs or IFN-$\gamma$ treated HPBM after 48 hrs of in vitro culture. A pulse of LPS the last 24 hrs of in vitro culture induces the accumulation of TNF-$\alpha$ mRNA in HPBM cultured for 3, 5, and 7 days, with the magnitude of induction decreasing approximately 10 fold between 3 and 7 days. Induction of TNF-$\alpha$ mRNA occurred in the absence of detectable TNF-$\alpha$ protein or supernatant activity. Maturation of HPBM to macrophage-like cells controls competence for activation, magnitude and duration of the activation response. ^
Resumo:
The neu oncogene encodes a growth factor receptor-like protein, p185, with an intrinsic tyrosine kinase activity. A single point mutation, an A to T transversion resulting in an amino acid substitution from valine to glutamic acid, in the transmembrane domain of the rat neu gene was found to be responsible for the transforming and tumorigenic phenotype of the cells that carry it. In contrast, the human proto-neu oncogene is frequently amplified in tumors and cell lines derived from tumors and the human neu gene overexpression/amplification in breast and ovarian cancers is known to correlate with poor patient prognosis. Examples of the human neu gene overexpression in the absence of gene amplification have been observed, which may suggest the significant role of the transcriptional and/or post-transcriptional control of the neu gene in the oncogenic process. However, little is known about the transcriptional mechanisms which regulate the neu gene expression. In this study, three examples are presented to demonstrate the positive and negative control of the neu gene expression.^ First, by using band shift assays and methylation interference analyses, I have identified a specific protein-binding sequence, AAGATAAAACC ($-$466 to $-$456), that binds a specific trans-acting factor termed RVF (for EcoRV factor on the neu promoter). The RVF-binding site is required for maximum transcriptional activity of the rat neu promoter. This same sequence is also found in the corresponding regions of both human and mouse neu promoters. Furthermore, this sequence can enhance the CAT activity driven by a minimum promoter of the thymidine kinase gene in an orientation-independent manner, and thus it behaves as an enhancer. In addition, Southwestern (DNA-protein) blot analysis using the RVF-binding site as a probe points to a 60-kDa polypeptide as a potential candidate for RVF.^ Second, it has been reported that the E3 region of adenovirus 5 induces down-regulation of epidermal growth factor (EGF) receptor through endocytosis. I found that the human neu gene product, p185, (an EGF receptor-related protein) is also down-regulated by adenovirus 5, but via a different mechanism. I demonstrate that the adenovirus E1a gene is responsible for the repression of the human neu gene at the transcriptional level.^ Third, a differential expression of the neu gene has been found in two cell model systems: between the mouse fibroblast Swiss-Webster 3T3 (SW3T3) and its variant NR-6 cells; and between the mouse liver tumor cell line, Hep1-a, and the mouse pancreas tumor cell line, 266-6. Both NR-6 and 266-6 cell lines are not able to express the neu gene product, p185. I demonstrate that, in both cases, the transcriptional repression of the neu gene may account for the lack of the p185 expression in these two cell lines. ^
Resumo:
A newly described subset of monocytes has been identified in peritoneal exudate cells (PEC) from the malignant ascites of patients with ovarian cancer. These cells were characterized by the production of IL-10 and TGF-β2, but not IL-12, IL-1α, or TNF-α, and expressed CD14, CD16, and CD54, but not HLA-DR, CD80, CD86, CD11a, CD11b, or CD25 cell surface antigens. Since this subset of monocytes could affect the modulation of tumor immune responses in vivo, studies were undertaken to determine their effect on the activation and proliferation of autologous T-cells from the peritoneal cavity of patients with ovarian carcinoma. Cytokine transcripts, including IL-2, GM-CSF, and IFN-γ were detected in T-cells isolated from patient specimens that also contained the IL-10 producing monocytes, although the IFN-γ and IL-2 proteins could not be detected in T-cells co-incubated with the IL-10 producing monocytes in vitro. Additionally, IL-10 producing monocytes co-cultured with autologous T-cells inhibited the proliferation of the T-cells in response to PHA. T-cell proliferation and cytokine protein production could be restored by the addition of neutralizing antibodies to IL-10R and TGF-β to the co-culture system. These results suggested that this subset of monocytes may modulate antitumor immune responses by inhibiting T-cell proliferation and cytokine protein production. Further studies determined that the precursors to the inhibitory monocytes were tumor-associated and only present in the peripheral blood of patients with ovarian cancer and not present in the peripheral blood of healthy donors. These precursors could be induced to the suppressor phenotype by the addition of IL-2 and GM-CSF, two cytokines detected in the peritoneal cavity of ovarian cancer patients. Lastly, it was shown that the suppressor monocytes from the peritoneal cavity of ovarian cancer patients could be differentiated to a non-inhibitory phenotype by the addition of TNF-α and IFN-γ to the culture system. The differentiated monocytes did not produce IL-10, expressed the activation antigens HLA-DR, CD80, and CD86, and were able to stimulate autologous T-cells in vitro. Since a concomitant reduction in immune function is associated with tumor growth and progression, the effects of these monocytes are of considerable importance in the context of tumor immunotherapy. ^
Resumo:
An abundance of monocytes and macrophages (MO/MA) in the microenvironment of epithelial ovarian cancer (EOC) suggests possible dual roles for these cells. Certain MO/MA subpopulations may inhibit tumor growth by antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis, or stimulation of adaptive immunity. In contrast, other MO/MA subpopulations may support tumor growth by immunosuppressive or pro-angiogenic cytokine production. A better understanding of the phenotype and activity of MO/MA in EOC should lead to greater insight into their role in the immunopathobiology of EOC and hence suggest targets for treatment. We have found differences in the proportions of MO/MA subpopulations in the peripheral blood and ascites of EOC patients compared to normal donors, and differences in MO/MA surface phenotype in the associated tumor environment compared to the systemic circulation. We also demonstrate that, following their activation in vitro, monocyte-derived macrophages (MDM) from the peripheral blood and ascites of EOC patients exhibit antitumor effector activities that are different from the behavior of normal donor cells. The phenotypic characteristics and antitumor activity of CD14+ MO/MA and an isolated subpopulation of CD14brightCD16 −HLA-DR+ MO/MA were compared in samples of normal donor peripheral blood and the peripheral blood and ascites from EOC patients. MDM were cultured with macrophage colony-stimulating factor (M-CSF) and activated with lipopolysaccharide (LPS) or a combination of LPS plus recombinant interferon-gamma. We determined that MO/MA from EOC patients had altered morphology and significantly less ADCC and phagocytic activity than did MO/MA from normal donors. ADCC and phagocytosis are mediated by receptors for the Fe portion of IgG (FcγRs), the expression of which were also found to be deficient on EOC MDM from peripheral blood and ascites. Anti-tumor functions not mediated by the FcγRs, such as macrophage mediated cytotoxicity and cytostasis, were not impaired in EOC MDM compared to normal donor MDM. Our findings also showed that MDM from both EOC patients and normal donors produce M-CSF-stimulated cytokines, including interleukin-8, tumor necrosis factor alpha, and interleukin-6, which have the potential to support ovarian tumor growth and metastasis. These findings may be relevant to the pathogenesis of EOC and to the development of future bioimmunotherapeutic strategies. ^
Resumo:
The phosphatidylinositol 3-kinase (PI3K)-signaling pathway has emerged as an important component of cytokine-mediated survival of hemopoietic cells. Recently, the protein kinase PKB/akt (referred to here as PKB) has been identified as a downstream target of PI3K necessary for survival. PKB has also been implicated in the phosphorylation of Bad, potentially linking the survival effects of cytokines with the Bcl-2 family. We have shown that granulocyte/macrophage colony-stimulating factor (GM-CSF) maintains survival in the absence of PI3K activity, and we now show that when PKB activation is also completely blocked, GM-CSF is still able to stimulate phosphorylation of Bad. Interleukin 3 (IL-3), on the other hand, requires PI3K for survival, and blocking PI3K partially inhibited Bad phosphorylation. IL-4, unique among the cytokines in that it lacks the ability to activate the p21ras–mitogen-activated protein kinase (MAPK) cascade, was found to activate PKB and promote cell survival, but it did not stimulate Bad phosphorylation. Finally, although our data suggest that the MAPK pathway is not required for inhibition of apoptosis, we provide evidence that phosphorylation of Bad may be occurring via a MAPK/ERK kinase (MEK)-dependent pathway. Together, these results demonstrate that although PI3K may contribute to phosphorylation of Bad in some instances, there is at least one other PI3K-independent pathway involved, possibly via activation of MEK. Our data also suggest that although phosphorylation of Bad may be one means by which cytokines can inhibit apoptosis, it may be neither sufficient nor necessary for the survival effect.
Resumo:
The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.
Resumo:
As previously reported, Listeria monocytogenes infection of P388D1 macrophages results in a rapid induction of NF-κB DNA-binding activity. Here we show that this induction of NF-κB activity occurs in a biphasic mode: first, a transient, IκBα degradation-dependent phase of activity, also induced by the nonvirulent species Listeria innocua, which is mediated by binding of the bacteria to the macrophage, or by adding Listeria-derived lipoteichoic acid to the macrophage; the second persistent phase of activation is only markedly induced when the bacteria enter the cytoplasm of the host cell and express the virulence genes plcA and plcB, encoding two phospholipases. We suggest that products of the enzymatic activity of phospholipases directly interfere with host cell signal transduction pathways, thus leading to persistent NF-κB activation via persistent IκBβ degradation.
Resumo:
Mutation of Bruton’s tyrosine kinase (Btk) impairs B cell maturation and function and results in a clinical phenotype of X-linked agammaglobulinemia. Activation of Btk correlates with an increase in the phosphorylation of two regulatory Btk tyrosine residues. Y551 (site 1) within the Src homology type 1 (SH1) domain is transphosphorylated by the Src family tyrosine kinases. Y223 (site 2) is an autophosphorylation site within the Btk SH3 domain. Polyclonal, phosphopeptide-specific antibodies were developed to evaluate the phosphorylation of Btk sites 1 and 2. Crosslinking of the B cell antigen receptor (BCR) or the mast cell Fcɛ receptor, or interleukin 5 receptor stimulation each induced rapid phosphorylation at Btk sites 1 and 2 in a tightly coupled manner. Btk molecules were singly and doubly tyrosine-phosphorylated. Phosphorylated Btk comprised only a small fraction (≤5%) of the total pool of Btk molecules in the BCR-activated B cells. Increased dosage of Lyn in B cells augmented BCR-induced phosphorylation at both sites. Kinetic analysis supports a sequential activation mechanism in which individual Btk molecules undergo serial transphosphorylation (site 1) then autophosphorylation (site 2), followed by successive dephosphorylation of site 1 then site 2. The phosphorylation of conserved tyrosine residues within structurally related Tec family kinases is likely to regulate their activation.
Resumo:
A pleiotropic cytokine, tumor necrosis factor-α (TNFα), regulates the expression of multiple macrophage gene products and thus contributes a key role in host defense. In this study, we have investigated the specificity and mechanism of activation of members of the c-Jun-NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) subfamily of mitogen-activated protein kinases (MAPKs) in mouse macrophages in response to stimulation with TNFα. Exposure of macrophages to TNFα stimulated a preferential increase in catalytic activity of the p46 JNK/SAPK isoform compared with the p54 JNK/SAPK isoform as determined by: (i) separation of p46 and p54 JNK/SAPKs by anion exchange liquid chromatography and (ii) selective immunodepletion of the p46 JNK/SAPK from macrophage lysates. To investigate the level of regulation of p46 JNK/SAPK activation, we determined the ability of MKK4/SEK1/JNKK, an upstream regulator of JNK/SAPKs, to phosphorylate recombinant kinase-inactive p46 and p54 JNK/SAPKs. Endogenous MKK4 was able to transphosphorylate both isoforms. In addition, both the p46 and p54 JNK/SAPK isoforms were phosphorylated on their TPY motif in response to TNFα stimulation as reflected by immunoblotting with a phospho-specific antibody that recognizes both kinases. Collectively, these results suggest that the level of control of p46 JNK/SAPK activation is distal not only to MKK4 but also to the p54 JNK/SAPK. Preferential isoform activation within the JNK/SAPK subfamily of MAPKs may be an important mechanism through which TNFα regulates macrophage phenotypic heterogeneity and differentiation.
Resumo:
Cells of the monocyte/macrophage lineage play a central role in both innate and acquired immunity of the host. However, the acquisition of functional competence and the ability to respond to a variety of activating or modulating signals require maturation and differentiation of circulating monocytes and entail alterations in both biochemical and phenotypic profiles of the cells. The process of activation also confers survival signals essential for the functional integrity of monocytes enabling the cells to remain viable in microenvironments of immune or inflammatory lesions that are rich in cytotoxic inflammatory mediators and reactive free-radical species. However, the molecular mechanisms of activation-induced survival signals in monocytes remain obscure. To define the mechanistic basis of activation-induced resistance to apoptosis in human monocytes at the molecular level, we evaluated the modulation of expression profiles of genes associated with the cellular apoptotic pathways upon activation and demonstrate the following: (i) activation results in selective resistance to apoptosis particularly to that induced by signaling via death receptors and DNA damage; (ii) concurrent with activation, the most apical protease in the death receptor pathway, caspase-8/FLICE is rapidly down-regulated at the mRNA level representing a novel regulatory mechanism; and (iii) activation of monocytes also leads to dramatic induction of the Bfl-1 gene, an anti apoptotic member of the Bcl-2 family. Our findings thus provide a potential mechanistic basis for the activation-induced resistance to apoptosis in human monocytes.
Resumo:
Chemokines comprise a family of low-molecular-weight proteins that elicit a variety of biological responses including chemotaxis, intracellular Ca2+ mobilization, and activation of tyrosine kinase signaling cascades. A subset of chemokines, including regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1α (MIP-1α), and MIP-1β, also suppress infection by HIV-1. All of these activities are contingent on interactions between chemokines and cognate seven-transmembrane spanning, G protein-coupled receptors. However, these activities are strongly inhibited by glycanase treatment of receptor-expressing cells, indicating an additional dependence on surface glycosaminoglycans (GAG). To further investigate this dependence, we examined whether soluble GAG could reconstitute the biological activities of RANTES on glycanase-treated cells. Complexes formed between RANTES and a number of soluble GAG failed to induce intracellular Ca2+ mobilization on either glycanase-treated or untreated peripheral blood mononuclear cells and were unable to stimulate chemotaxis. In contrast, the same complexes demonstrated suppressive activity against macrophage tropic HIV-1. Complexes composed of 125I-labeled RANTES demonstrated saturable binding to glycanase-treated peripheral blood mononuclear cells, and such binding could be reversed partially by an anti-CCR5 antibody. These results suggest that soluble chemokine–GAG complexes represent seven-transmembrane ligands that do not activate receptors yet suppress HIV infection. Such complexes may be considered as therapeutic formulations for the treatment of HIV-1 infection.
Resumo:
What determines the nuclear organization within a cell and whether this organization itself can impose cellular function within a tissue remains unknown. To explore the relationship between nuclear organization and tissue architecture and function, we used a model of human mammary epithelial cell acinar morphogenesis. When cultured within a reconstituted basement membrane (rBM), HMT-3522 cells form polarized and growth-arrested tissue-like acini with a central lumen and deposit an endogenous BM. We show that rBM-induced morphogenesis is accompanied by relocalization of the nuclear matrix proteins NuMA, splicing factor SRm160, and cell cycle regulator Rb. These proteins had distinct distribution patterns specific for proliferation, growth arrest, and acini formation, whereas the distribution of the nuclear lamina protein, lamin B, remained unchanged. NuMA relocalized to foci, which coalesced into larger assemblies as morphogenesis progressed. Perturbation of histone acetylation in the acini by trichostatin A treatment altered chromatin structure, disrupted NuMA foci, and induced cell proliferation. Moreover, treatment of transiently permeabilized acini with a NuMA antibody led to the disruption of NuMA foci, alteration of histone acetylation, activation of metalloproteases, and breakdown of the endogenous BM. These results experimentally demonstrate a dynamic interaction between the extracellular matrix, nuclear organization, and tissue phenotype. They further show that rather than passively reflecting changes in gene expression, nuclear organization itself can modulate the cellular and tissue phenotype.
Resumo:
Insights into the function of a gene can be gained in multiple ways, including loss-of-function phenotype, sequence similarity, expression pattern, and by the consequences of its misexpression. Analysis of the phenotypes produced by expression of a gene at an abnormal time, place, or level may provide clues to a gene’s function when other approaches are not illuminating. Here we report that an eye-specific, enhancer–promoter present in the P element expression vector pGMR is able to drive high level expression in the eye of genes near the site of P element insertion. Cell fate determination, differentiation, proliferation, and death are essential for normal eye development. Thus the ability to carry out eye-specific misexpression of a significant fraction of genes in the genome, given the dispensability of the eye for viability and fertility of the adult, should provide a powerful approach for identifying regulators of these processes. To test this idea we carried out two overexpression screens for genes that function to regulate cell death. We screened for insertion-dependent dominant phenotypes in a wild-type background, and for dominant modifiers of a reaper overexpression-induced small eye phenotype. Multiple chromosomal loci were identified, including an insertion 5′ to hid, a potent inducer of apoptosis, and insertions 5′ to DIAP1, a cell death suppressor. To facilitate the cloning of genes near the P element insertion new misexpression vectors were created. A screen with one of these vectors identified eagle as a suppressor of a rough eye phenotype associated with overexpression of an activated Ras1 gene.
Resumo:
Dopamine is a neuromodulator involved in the control of key physiological functions. Dopamine-dependent signal transduction is activated through the interaction with membrane receptors of the seven-transmembrane domain G protein-coupled family. Among them, dopamine D2 receptor is highly expressed in the striatum and the pituitary gland as well as by mesencephalic dopaminergic neurons. Lack of D2 receptors in mice leads to a locomotor parkinsonian-like phenotype and to pituitary tumors. The D2 receptor promoter has characteristics of a housekeeping gene. However, the restricted expression of this gene to particular neurons and cells points to a strict regulation of its expression by cell-specific transcription factors. We demonstrate here that the D2 receptor promoter contains a functional retinoic acid response element. Furthermore, analysis of retinoic acid receptor-null mice supports our finding and shows that in these animals D2 receptor expression is reduced. This finding assigns to retinoids an important role in the control of gene expression in the central nervous system.