904 resultados para Lutjanidae. Mutton snapper. Dog snapper. Mitochondrial DNA.Population genetics
Resumo:
Scomberomorus cavalla é uma espécie de peixe pelágico amplamente distribuído na costa oeste do Atlântico, e uma diminuição no seu nível de captura tem sido verificada nos E.U.A e Golfo do México, comparada com os níveis alcançados pela espécie no passado. Da mesma forma, em algumas áreas do Brasil, há indícios de sobre-exploração. Entretanto, não existem estudos moleculares que visam o manejo deste importante item. Desta forma, no presente estudo, foram seqüenciados 380 pares de bases nucleotídicas da região da Alça-D do DNA mitocondrial de amostras provenientes de desembarque em Macapá, Bragança e Fortaleza. As análises filogenéticas e populacionais revelaram que há apenas uma população panmítica e baixos níveis de variabilidade genética foram observados. Estes resultados, assim como a observada sobre-exploração de S. cavala, representam dados muito importantes para o estabelecimento do manejo deste estoque a fim de prevenir um colapso ou risco de extinção no futuro.
Resumo:
O câncer do sistema nervoso central representa 2% de todas as neoplasias malignas na população mundial e 23% dos casos de câncer infantil. No Brasil, estimam-se 4.820 casos deste câncer em homens e 4.450 em mulheres para o ano de 2012. Os gliomas são tumores do sistema nervoso central formados a partir de células da glia e somam mais de 70% do tumores cerebrais. A propriedade mais importante dos gliomas é sua capacidade de evasão imunológica. Idade, etnia, gênero e ocupação podem ser considerados fatores de risco para o surgimento de gliomas, e são duas vezes mais frequentes em afro-americanos. O astrocitoma é o tumor glial mais frequente, constituindo cerca de 75% dos casos de gliomas. Estes tumores são classificados em quatro graus, de acordo com a Organização Mundial de Saúde. O DNA mitocondrial está relacionado com o desenvolvimento e a progressão de vários tipos de tumores. A mitocôndria é responsável pelo balanço energético celular e está envolvida no disparo da apoptose em resposta ao estresse oxidativo. Mutações na D-LOOP podem alterar a taxa de replicação do DNA e aumentar o risco do desenvolvimento do câncer. Neste estudo foram analisadas 29 amostras de astrocitoma classificados de acordo com a OMS. Nossos dados sugerem que os astrocitomas de baixo grau podem estar relacionados à herança genética, tornando portadores de alguns polimorfismos ou mutações específicas, mais suscetíveis ao risco de desenvolver a doença, e os de alto grau podem estar relacionados à exposição prolongada aos agentes carginógenos. Foram identificados polimorfismos e mutações onde alguns apresentaram relação com o risco do desenvolvimento de astrocitomas e com a progressão da doença. A inserção de dois ou mais nucleotídeos nas regiões de microssatélites pode causar sua instabilidade e contribuir com o surgimento do câncer. A deleção no sítio 16132 pode ser um marcador para astrocitoma de alto grau, assim como a inserção de duas ou mais citosinas no sítio 16190 pode ser um marcador específico para astrocitomas. As mutações heteroplásmicas podem ser determinantes para o surgimento e/ou progressão de astrocitomas de alto grau.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Surveys of commercial markets combined with molecular taxonomy (i.e. molecular monitoring) provide a means to detect products from illegal, unregulated and/or unreported (IUU) exploitation, including the sale of fisheries bycatch and wild meat (bushmeat). Capture-recapture analyses of market products using DNA profiling have the potential to estimate the total number of individuals entering the market. However, these analyses are not directly analogous to those of living individuals because a ‘market individual’ does not die suddenly but, instead, remains available for a time in decreasing quantities, rather like the exponential decay of a radioactive isotope. Here we use mitochondrial DNA (mtDNA) sequences and microsatellite genotypes to individually identify products from North Pacific minke whales (Balaenoptera acutorostrata ssp.) purchased in 12 surveys of markets in the Republic of (South) Korea from 1999 to 2003. By applying a novel capture-recapture model with a decay rate parameter to the 205 unique DNA profiles found among 289 products, we estimated that the total number of whales entering trade across the five-year survey period was 827 (SE, 164; CV, 0.20) and that the average ‘half-life’ of products from an individual whale on the market was 1.82 months (SE, 0.24; CV, 0.13). Our estimate of whales in trade (reflecting the true numbers killed) was significantly greater than the officially reported bycatch of 458 whales for this period. This unregulated exploitation has serious implications for the survival of this genetically distinct coastal population. Although our capture-recapture model was developed for specific application to the Korean whale-meat markets, the exponential decay function could be modified to improve the estimates of trade in other wildmeat or fisheries markets or abundance of living populations by noninvasive genotyping.
Resumo:
Weddell seals (Leptonychotes weddellii Lesson) at White Island, Antarctica form a small, completely enclosed, natural population hypothesized to be of recent origin, likely founded by individuals from nearby Erebus Bay. This population constitutes an ideal model to document a founder event and ensuing genetic drift, with implications for conservation. Here we combined historical accounts, census and tagging data since the late 1960s, and genetic data (41 microsatellite loci and mitochondrial DNA sequences) from 84 individuals representing nearly all individuals present between 1990 and 2000 to investigate the history of the founding of the White Island population, document its population dynamics and evaluate possible future threats. We fully resolved parental relationships over three overlapping generations. Cytonuclear disequilibrium among the first generation suggested that it comprised the direct descendants of a founding group. We estimated that the White Island population was founded by a small group of individuals that accessed the island during a brief break in the surrounding sea ice in the mid-1950s, consistent with historical accounts. Direct and indirect methods of calculating effective population size were highly congruent and suggested a minimum founding group consisting of three females and two males. The White Island population showed altered reproductive dynamics compared to Erebus Bay, including highly skewed sex ratio, documented inbred mating events, and the oldest known reproducing Weddell seals. A comparison with the putative source population showed that the White Island population has an effective inbreeding coefficient (Fe) of 0.29. Based on a pedigree analysis including the hypothesized founding group, 86% of the individuals for whom parents were known had inbreeding coefficients ranging 0.09–0.31. This high level of inbreeding was correlated with reduced pup survival. Seals at White Island therefore face the combined effects of low genetic variability, lack of immigration, and inbreeding depression. Ultimately, this study provides evidence of the effects of natural isolation on a large, long-lived vertebrate and can provide clues to the potential effects of anthropogenic- caused isolation of similar taxa.
Resumo:
Abstract Background The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. Results We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. Conclusion The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
Resumo:
This study poses as its objective the genetic characterization of the ancient population of the Great White shark, Carcharodon carcharias, L.1758, present in the Mediterranean Sea. Using historical evidence, for the most part buccal arches but also whole, stuffed examples from various national museums, research institutes and private collections, a dataset of 18 examples coming from the Mediterranean Sea has been created, in order to increase the informations regarding this species in the Mediterranean. The importance of the Mediterranean provenance derives from the fact that a genetic characterization of this species' population does not exist, and this creates gaps in the knowledge of this species in the Mediterranean. The genetic characterization of the individuals will initially take place by the extraction of the ancient DNA and the analysis of the variations in the sequence markers of the mitochondrial DNA. This approach has allowed the genetic comparison between ancient populations of the Mediterranean and contemporary populations of the same geographical area. In addition, the genetic characterization of the population of white sharks of the Mediterranean, has allowed a genetic comparison with populations from global "hot spots", using published sequences in online databases (NCBI, GenBank). Analyzing the variability of the dataset, both in terms space and time, I assessed the evolutionary relationships of the Mediterranean population of Great Whites with the global populations (Australia/New Zealand, South Africa, Pacific USA, West Atlantic), and the temporal trend of the Mediterranean population variability. This method based on the sequencing of two portions of mitochondrial DNA genes, markers showed us how the population of Great White Sharks in the Mediterranean, is genetically more similar to the populations of the Australia Pacific ocean, American Pacific Ocean, rather than the population of South Africa, and showing also how the population of South Africa is abnormally distant from all other clusters. Interestingly, these results are inconsistent with the results from tagging of this species. In addition, there is evidence of differences between the ancient population of the Mediterranean with the modern one. This differentiation between the ancient and modern population of white shark can be the result of events impacting on this species occurred over the last two centuries.
Resumo:
Der Fokus dieser Dissertation ist die populationsgenetische Analyse der neolithischen Bevölkerungswechsel in den 6.-5. Jahrtausende vor Christus, die im westlichen Karpatenbecken stattfanden. Die Zielsetzung der Studie war, mittels der Analyse von mitochondrialer und Y-chromosomaler aDNA, den Genpool der sechs neolithischen und kupferzeitlichen Populationen zu untersuchen und die daraus resultierenden Ergebnisse mit anderen prähistorischen und modernen genetischen Daten zu vergleichen.rnInsgesamt wurden 323 Individuen aus 32 ungarischen, kroatischen und slowakischen Fundplätzen beprobt und bearbeitet in den archäogenetischen Laboren der Johannes Gutenberg-Universität in Mainz. Die DNA Ergebnisse wurden mit verschiedenen populationsgenetischen Methoden ausgewertet. Vergleichsdaten von prähistorischen und modernen eurasiatischen Populationen wurden dazu gesammelt.rnDie HVS-I Region der mitochondrialen DNA konnten bei 256 Individuen reproduziert und authentifiziert werden (mit einer Erfolgsrate von 85.9%). Die Typisierung der HVS-II Region war in 80 Fällen erfolgreich. Testend alle gut erhaltene Proben, die Y-chromosomale Haplogruppe konnte in 33 männlichen Individuen typisiert werden.rnDie neolithischen, mitochondrialen Haplogruppen deuten auf eine hohe Variabilität des maternalen Genpools hin. Sowohl die mitochondrialen als auch die Y-chromosomalen Daten lassen Rückschlüsse auf eine nah-östliche bzw. südwestasiatische Herkunft der frühen Bauern zu. Die Starčevo- und linearbandkermaischen-Populationen in westlichem Karpatenbecken (letztere abgekürzt als LBKT) und die linearbandkermaischen-Population in Mitteleuropa (LBK) haben so starke genetische Ähnlichkeit, dass die Verbreitung der LBK nach Mitteleuropa mit vorangegangenen Wanderungsereignissen zu erklären ist. Die Transdanubische aDNA Daten zeigen hohe Affinität zu den publizierten prähistorischen aDNA Datensätzen von Mitteleuropa aus den 6.-4. Jahrtausende vor Chr. Die maternal-genetische Variabilität der Starčevo-Population konnte auch innerhalb der nachfolgenden Populationen Transdanubiens festgestellt werden. Nur kleinere Infiltrationen und Immigrationsereignissen konnten während der Vinča-, LBKT-, Sopot- und Balaton-Lasinja-Kultur in Transdanubien identifiziert werden. Zwischen den transdanubischen Regionen konnten mögliche genetische Unterschiede nur in der LBKT und in der Lengyel-Periode beobachtet werden, als sich die nördlichen Gruppen von den südlichen Populationen trennten. rnDie festgestellte Heterogenität der mtDNA in Zusammenhang mit der Y-chromosomalen Homogenität in den Starčevo- und LBK-Populationen, weisen auf patrilokale Residenzregeln und patrilineare Abstammungsregeln in den ersten Bauergemeinschaften hin. rnObwohl die hier präsentierten Daten einen großen Fortschritt in der Forschung von aDNA und Neolithikum des Karpatenbeckens und Mitteleuropas bedeuten, werfen sie auch mehrere Fragen auf, deren Beantwortung durch zukünftige Genomforschungen erbracht werden könnte.
Resumo:
Objective: To use familial patterns of recurrence of pre-eclampsia to investigate whether paternal genes expressed in the fetus contribute to the mother’s risk of pre-eclampsia and whether mother’s susceptibility to pre-eclampsia is related to maternal inheritance by mitochondrial DNA.
Resumo:
The nature of domestic cattle origins in Africa are unclear as archaeological data are relatively sparse. The earliest domesticates were humpless, or Bos taurus, in morphology and may have shared a common origin with the ancestors of European cattle in the Near East. Alternatively, local strains of the wild ox, the aurochs, may have been adopted by peoples in either continent either before or after cultural influence from the Levant. This study examines mitochondrial DNA displacement loop sequence variation in 90 extant bovines drawn from Africa, Europe, and India. Phylogeny estimation and analysis of molecular variance verify that sequences cluster significantly into continental groups. The Indian Bos indicus samples are most markedly distinct from the others, which is indicative of a B. taurus nature for both European and African ancestors. When a calibration of sequence divergence is performed using comparisons with bison sequences and an estimate of 1 Myr since the Bison/Bos Leptobos common ancestor, estimates of 117-275,000 B.P. and 22-26,000 B.P. are obtained for the separation between Indians and others and between African and European ancestors, respectively. As cattle domestication is thought to have occurred approximately 10,000 B.P., these estimates suggest the domestication of genetically discrete aurochsen strains as the origins of each continental population. Additionally, patterns of variation that are indicative of population expansions (probably associated with the domestication process) are discernible in Africa and Europe. Notably, the genetic signatures of these expansions are clearly younger than the corresponding signature of African/European divergence.
Resumo:
Mitochondrial diseases, predominantly mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), may occasionally underlie or coincide with ischemic stroke (IS) in young and middle-aged individuals. We searched for undiagnosed patients with MELAS in a target subpopulation of unselected young IS patients enrolled in the Stroke in Young Fabry Patients study (sifap1). Among the 3291 IS patients aged 18-55 years recruited to the sifap1 study at 47 centers across 14 European countries, we identified potential MELAS patients with the following phenotypic features: (a) diagnosed cardiomyopathy or (b) presence of two of the three following findings: migraine, short stature (≤165 cm for males; ≤155 cm for females), and diabetes. Identified patients' blood samples underwent analysis of the common MELAS mutation, m.3243A>G in the MTTL1 gene of mitochondrial DNA. Clinical and cerebral MRI features of the mutation carriers were reviewed. We analyzed blood samples of 238 patients (177 with cardiomyopathy) leading to identification of four previously unrecognized MELAS main mutation carrier-patients. Their clinical and MRI characteristics were within the expectation for common IS patients except for severe hearing loss in one patient and hyperintensity of the pulvinar thalami on T1-weighted MRI in another one. Genetic testing for the m.3243A>G MELAS mutation in young patients with IS based on phenotypes suggestive of mitochondrial disease identifies previously unrecognized carriers of MELAS main mutation, but does not prove MELAS as the putative cause.
Resumo:
Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.
Resumo:
Based on our current knowledge about population genetics, phylogeography and speciation, we begin to understand that the deep sea harbours more species than suggested in the past. Deep-sea soft-sediment environment in particular hosts a diverse and highly endemic invertebrate fauna. Very little is known about evolutionary processes that generate this remarkable species richness, the genetic variability and spatial distribution of deep-sea animals. In this study, phylogeographic patterns and the genetic variability among eight populations of the abundant and widespread deep-sea isopod morphospecies Betamorpha fusiformis [Barnard, K.H., 1920. Contributions to the crustacean fauna of South Africa. 6. Further additions to the list of marine isopods. Annals of the South African Museum 17, 319-438] were examined. A fragment of the mitochondrial 16S rRNA gene of 50 specimens and the complete nuclear 18S rRNA gene of 7 specimens were sequenced. The molecular data reveal high levels of genetic variability of both genes between populations, giving evidence for distinct monophyletic groups of haplotypes with average p-distances ranging from 0.0470 to 0.1440 (d-distances: 0.0592-0.2850) of the 16S rDNA, and 18S rDNA p-distances ranging between 0.0032 and 0.0174 (d-distances: 0.0033-0.0195). Intermediate values are absent. Our results show that widely distributed benthic deep-sea organisms of a homogeneous phenotype can be differentiated into genetically highly divergent populations. Sympatry of some genotypes indicates the existence of cryptic speciation. Flocks of closely related but genetically distinct species probably exist in other widespread benthic deep-sea asellotes and other Peracarida. Based on existing data we hypothesize that many widespread morphospecies are complexes of cryptic biological species (patchwork hypothesis).
Resumo:
Acknowledgements. Cetacean samples were collected under the auspices of stranding monitoring programs run by the Sociedade Portuguesa de Vida Selvagem, the Coordinadora para o Estudio dos Mamíferos Mariños (supported by the regional government Xunta de Galicia), the UK Cetacean Strandings Investigation Programme and the Scottish Agriculture College Veterinary Science Division (jointly funded by Defra and the Devolved Governments of Scotland and Wales), the Marine Mammals Research Group of the Institute of Marine Research (Norway), the Museum of Natural History of the Faroe Islands and the International Fund for Animal Welfare Marine Mammal Rescue and Research Program (USA). The authors thank all the members of these institutions and organizations for their assistance with data and sample collection. S.S.M., P.M.F. and M.F. were supported by PhD grants from the Fundação para a Ciência e Tecnologia (POPH/FSE ref SFRH/BD/ 38735/ 2007, SFRH/BD/36766/2007 and SFRH/BD/30240/ 2006, respectively). A.L. was supported by a postdoctoral grant from the Fundação para a Ciência e Tecnologia (ref SFRH/BPD/82407/2011). The work related to strandings and tissue collection in Portugal was partially supported by the SafeSea project EEAGrants PT 0039 (supported by Iceland, Liechtenstein and Norway through the EEA Financial Mechanism), the MarPro project Life09 NAT/PT/000038 (funded by the European Union program LIFE+) and the project CetSenti FCT RECI/AAG-GLO/0470/2012 (FCOMP- 01-0124-FEDER-027472) (funded by the program COMPETE and the Fundação para a Ciência e Tecnologia). G.J.P. thanks the University of Aveiro and Caixa Geral de Depósitos (Portugal) for financial support. The authors acknowledge the assistance of the chemical analysts at Marine Scotland Science with the fatty acid analysis.
Resumo:
Acknowledgements. Cetacean samples were collected under the auspices of stranding monitoring programs run by the Sociedade Portuguesa de Vida Selvagem, the Coordinadora para o Estudio dos Mamíferos Mariños (supported by the regional government Xunta de Galicia), the UK Cetacean Strandings Investigation Programme and the Scottish Agriculture College Veterinary Science Division (jointly funded by Defra and the Devolved Governments of Scotland and Wales), the Marine Mammals Research Group of the Institute of Marine Research (Norway), the Museum of Natural History of the Faroe Islands and the International Fund for Animal Welfare Marine Mammal Rescue and Research Program (USA). The authors thank all the members of these institutions and organizations for their assistance with data and sample collection. S.S.M., P.M.F. and M.F. were supported by PhD grants from the Fundação para a Ciência e Tecnologia (POPH/FSE ref SFRH/BD/ 38735/ 2007, SFRH/BD/36766/2007 and SFRH/BD/30240/ 2006, respectively). A.L. was supported by a postdoctoral grant from the Fundação para a Ciência e Tecnologia (ref SFRH/BPD/82407/2011). The work related to strandings and tissue collection in Portugal was partially supported by the SafeSea project EEAGrants PT 0039 (supported by Iceland, Liechtenstein and Norway through the EEA Financial Mechanism), the MarPro project Life09 NAT/PT/000038 (funded by the European Union program LIFE+) and the project CetSenti FCT RECI/AAG-GLO/0470/2012 (FCOMP- 01-0124-FEDER-027472) (funded by the program COMPETE and the Fundação para a Ciência e Tecnologia). G.J.P. thanks the University of Aveiro and Caixa Geral de Depósitos (Portugal) for financial support. The authors acknowledge the assistance of the chemical analysts at Marine Scotland Science with the fatty acid analysis.