970 resultados para Low voltage varistor
Resumo:
In this study, oxide and nitride films were deposited at room temperature through the reaction of silicon Sputtered by argon and oxygen ions or argon and nitrogen ions at 250 and 350 W with 0.67 Pa pressure. It was observed that for both thin films the deposition rates increase with the applied RF power and decrease with the increase of the gas concentration. The Si/O and Si/N ratio were obtained through RBS analyses and for silicon oxide the values changed from 0.42 to 0.57 and for silicon nitride the Values changed from 0.4 to 1.03. The dielectric constants were calculated through capacitance-voltage curves with the silicon oxide values varying from 2.4 to 5.5, and silicon nitride values varying from 6.2 to 6.7, which are good options for microelectronic dielectrics. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Magneto-transport measurements of the 2D hole system (2DHS) in p-type Si-Si1-xGex heterostructures identify the integer quantum Hall effect (IQHE) at dominantly odd-integer filling factors v and two low-temperature insulating phases (IPs) at v = 1.5 and v less than or similar to 0.5, with re-entrance to the quantum Hall effect at v = 1. The temperature dependence, current-voltage characteristics, and tilted field and illumination responses of the IP at v = 1.5 indicate that the important physics is associated with an energy degeneracy of adjacent Landau levels of opposite spin, which provides a basis for consideration of an intrinsic, many-body origin.
Resumo:
Low-cost UHF-band p-i-n diodes are used to develop high-performance L-band series and parallel switches. To stop the rectification of large RF, signals, the diodes are biased at a large reverse-bias voltage. Parasitic elements of the diodes are tuned out using LC circuits in biasing circuits without increasing the size of the switches. (C) 2002 John Wiley Sons, Inc.
Resumo:
Four emerging high-energy non-thermal technologies may replace or augment heating for producing sterile low-acid food products. High pressure, high-voltage pulsed electric field, high-energy ultrasound and high-intensity pulsed light are all capable of reducing bacterial spore counts under certain conditions. However, only non-continuous high pressure treatments, at temperatures higher than ambient, are currently capable of completely inactivating spores and producing sterile food products. The first three technologies also reduce the resistance of spores to inactivation by heat.
Resumo:
This paper addresses the voltage droop compensation associated with long pulses generated by solid-stated based high-voltage Marx topologies. In particular a novel design scheme for voltage droop compensation in solid-state based bipolar Marx generators, using low-cost circuitry design and control, is described. The compensation consists of adding one auxiliary PWM stage to the existing Marx stages, without changing the modularity and topology of the circuit, which controls the output voltage and a LC filter that smoothes the voltage droop in both the positive and negative output pulses. Simulation results are presented for 5 stages Marx circuit using 1 kV per stage, with 1 kHz repetition rate and 10% duty cycle.
Resumo:
This paper describes the operation of a solid-state series stacked topology used as a serial and parallel switch in pulsed power applications. The proposed circuit, developed from the Marx generator concept, balances the voltage stress on each series stacked semiconductor, distributing the total voltage evenly. Experimental results from a 10 kV laboratory series stacked switch, using 1200 V semiconductors in a ten stages solid-state series stacked circuit, are reported and discussed, considering resistive, capacitive and inductive type loads for high and low duty factor voltage pulse operation.
Resumo:
A start-up circuit, used in a micro-power indoor light energy harvesting system, is described. This start-up circuit achieves two goals: first, to produce a reset signal, power-on-reset (POR), for the energy harvesting system, and secondly, to temporarily shunt the output of the photovoltaic (PV) cells, to the output node of the system, which is connected to a capacitor. This capacitor is charged to a suitable value, so that a voltage step-up converter starts operating, thus increasing the output voltage to a larger value than the one provided by the PV cells. A prototype of the circuit was manufactured in a 130 nm CMOS technology, occupying an area of only 0.019 mm(2). Experimental results demonstrate the correct operation of the circuit, being able to correctly start-up the system, even when having an input as low as 390 mV using, in this case, an estimated energy of only 5.3 pJ to produce the start-up.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Amorphous and nanocrystalline silicon films obtained by Hot-Wire Chemical Vapor Deposition have been incorporated as active layers in n-type coplanar top gate thin film transistors deposited on glass substrates covered with SiO 2. Amorphous silicon devices exhibited mobility values of 1.3 cm 2 V - 1 s - 1, which are very high taking into account the amorphous nature of the material. Nanocrystalline transistors presented mobility values as high as 11.5 cm 2 V - 1 s - 1 and resulted in low threshold voltage shift (∼ 0.5 V).
Resumo:
This study compares different rotor structures of permanent magnet motors with fractional slot windings. The surface mounted magnet and the embedded magnet rotor structures are studied. This thesis analyses the characteristics of a concentrated two-layer winding, each coil of which is wound around one tooth and which has a number of slots per pole and per phase less than one (q < 1). Compared to the integer slot winding, the fractional winding (q < 1) has shorter end windings and this, thereby, makes space as well as manufacturing cost saving possible. Several possible ways of winding a fractional slot machine with slots per pole and per phase lessthan one are examined. The winding factor and the winding harmonic components are calculated. The benefits attainable from a machine with concentrated windingsare considered. Rotor structures with surface magnets, radially embedded magnets and embedded magnets in V-position are discussed. The finite element method isused to solve the main values of the motors. The waveform of the induced electro motive force, the no-load and rated load torque ripple as well as the dynamic behavior of the current driven and voltage driven motor are solved. The results obtained from different finite element analyses are given. A simple analytic method to calculate fractional slot machines is introduced and the values are compared to the values obtained with the finite element analysis. Several different fractional slot machines are first designed by using the simple analytical methodand then computed by using the finite element method. All the motors are of thesame 225-frame size, and have an approximately same amount of magnet material, a same rated torque demand and a 400 - 420 rpm speed. An analysis of the computation results gives new information on the character of fractional slot machines.A fractional slot prototype machine with number 0.4 for the slots per pole and per phase, 45 kW output power and 420 rpm speed is constructed to verify the calculations. The measurement and the finite element method results are found to beequal.
Resumo:
IIn electric drives, frequency converters are used to generatefor the electric motor the AC voltage with variable frequency and amplitude. When considering the annual sale of drives in values of money and units sold, the use of low-performance drives appears to be in predominant. These drives have tobe very cost effective to manufacture and use, while they are also expected to fulfill the harmonic distortion standards. One of the objectives has also been to extend the lifetime of the frequency converter. In a traditional frequency converter, a relatively large electrolytic DC-link capacitor is used. Electrolytic capacitors are large, heavy and rather expensive components. In many cases, the lifetime of the electrolytic capacitor is the main factor limiting the lifetime of the frequency converter. To overcome the problem, the electrolytic capacitor is replaced with a metallized polypropylene film capacitor (MPPF). The MPPF has improved properties when compared to the electrolytic capacitor. By replacing the electrolytic capacitor with a film capacitor the energy storage of the DC-linkwill be decreased. Thus, the instantaneous power supplied to the motor correlates with the instantaneous power taken from the network. This yields a continuousDC-link current fed by the diode rectifier bridge. As a consequence, the line current harmonics clearly decrease. Because of the decreased energy storage, the DC-link voltage fluctuates. This sets additional conditions to the controllers of the frequency converter to compensate the fluctuation from the supplied motor phase voltages. In this work three-phase and single-phase frequency converters with small DC-link capacitor are analyzed. The evaluation is obtained with simulations and laboratory measurements.
Resumo:
The Tandem-GMAW method is the latest development as the consequences of improvements in the welding methods. The twin-wire and then the Tandem-method with the separate power sources has got a remarkable place in the welding of many types of materials with different joint types. The biggest advantage of Tandem welding method is the flexibility of choosing both the electrodes of different types from each other according to the type of the parent material. This is possible because of the feasibility of setting the separate welding parameters for both the wires. In this thesis work the effect of the variation in three parameters on the weld bead in Tandem-GMA welding method is studied. Theses three parameters are the wire feed rate in the slave wire, the wire feed rate in the master wire and the voltage difference in both the wires. The results are then compared to study the behaviour of the weld bead with the change in these parameters.
Resumo:
N-type as well P-type top-gate microcrystalline silicon thin film transistors (TFTs) are fabricated on glass substrates at a maximum temperature of 200 °C. The active layer is an undoped μc-Si film, 200 nm thick, deposited by Hot-Wire Chemical Vapor. The drain and source regions are highly phosphorus (N-type TFTs) or boron (P-type TFTs)-doped μc-films deposited by HW-CVD. The gate insulator is a silicon dioxide film deposited by RF sputtering. Al-SiO 2-N type c-Si structures using this insulator present low flat-band voltage,-0.2 V, and low density of states at the interface D it=6.4×10 10 eV -1 cm -2. High field effect mobility, 25 cm 2/V s for electrons and 1.1 cm 2/V s for holes, is obtained. These values are very high, particularly the hole mobility that was never reached previously.
Resumo:
Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.