982 resultados para Lipid-core Peptide System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of coolant accidents (LOCA) in the primary cooling circuit of a nuclear reactor may result in damage to insulation materials that are located near to the leak. The insulation materials released may compromise the operation of the emergency core cooling system (ECCS). Insulation material in the form of mineral wool fibre agglomerates (MWFA) maybe transported to the containment sump strainers mounted at the inlet of the emergency cooling pumps, where the insulation fibres may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fibre cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Thus, knowledge of transport characteristics of the damaged insulation materials in various scenarios is required to help plan for the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a LOCA. The study entails the generation of fibre agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effect that corrosion of the containment internals by the coolant has on the strainer pressure drop. The focus of this presentation is on the experiments performed that characterize the horizontal transport of MWFA, whereas the corresponding CFD simulations are described in an accompanying contribution (see abstract of Cartland Glover et al.). The experiments were performed a racetrack type channel that provided a near uniform horizontal flow. The channel is 0.1 wide by 1.2 m high with a straight length of 5 m and two bends of 0.5 m. The measurement techniques include particle imaging (both wide-angle and macro lens), concurrent particle image velocimetry, ultravelocimetry, laser detection sensors to sense the presence of absence of MWFA and pertinent measurements of the MWFA concentration and quiescent settling characteristics. The transport of the MWFA was observed at velocities of 0.1 and 0.25 m s-1 to verify numerical model behaviour in and just beyond expected velocities in the containment sump of a nuclear reactor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations in the containment sump. Two dispersed phases were conditions to determine the influence of entrained air from a jet on the transport of fibre agglomerates through the sump. The strainer model of A. Grahn was implemented to observe the impact that the accumulation of the fibres have on the pressure drop across the strainers. The geometry considered is similar to the containment sump configurations found in Nuclear Power Plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Application of such a model to sedimentation in a quiescent column and a horizontal flow are examined. The scenario also presents the suspension and horizontal transport of a single fiber agglomerate phase in a racetrack type channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage to insulation materials located near to a primary circuit coolant leak may compromise the operation of the emergency core cooling system (ECCS). Insulation material in the form of mineral wool fiber agglomerates (MWFA) maybe transported to the containment sump strainers, where they may block or penetrate the strainers. Though the impact of MWFA on the pressure drop across the strainers is minimal, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effect that corrosion and erosion of the containment internals by the coolant has on the strainer pressure drop. The focus of this paper is on the verification and validation of numerical models that can predict the transport of MWFA. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Note that the relative viscosity is only significant at high concentrations. Three single effect experiments were used to provide validation data on the transport of the fiber agglomerates under conditions of sedimentation in quiescent fluid, sedimentation in a horizontal flow and suspension in a horizontal flow. The experiments were performed in a rectangular column for the quiescent fluid and a racetrack type channel that provided a near uniform horizontal flow. The numerical models of sedimentation in the column and the racetrack channel found that the sedimentation characteristics are consistent with the experiments. For channel suspension, the heavier fibers tend to accumulate at the channel base even at high velocities, while lighter phases are more likely to be transported around the channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Only one of the single effect experimental scenarios is described here that are used in validation of the numerical models. The scenario examines the suspension and horizontal transport of the fiber agglomerates in a racetrack type channel. The corresponding experiments will be described in an accompanying presentation (see abstract of Seeliger et al.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of the two-fluid and drift flux models have been used to model the transport of fibrous debris. This debris is generated during loss of coolant accidents in the primary circuit of pressurized or boiling water nuclear reactors, as high pressure steam or water jets can damage adjacent insulation materials including mineral wool blankets. Fibre agglomerates released from the mineral wools may reach the containment sump strainers, where they can accumulate and compromise the long-term operation of the emergency core cooling system. Single-effect experiments of sedimentation in a quiescent rectangular column and sedimentation in a horizontal flow are used to verify and validate this particular application of the multiphase numerical models. The utilization of both modeling approaches allows a number of pseudocontinuous dispersed phases of spherical wetted agglomerates to be modeled simultaneously. Key effects on the transport of the fibre agglomerates are particle size, density and turbulent dispersion, as well as the relative viscosity of the fluid-fibre mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the following pages, three well-known Latinoamericanists share their views on the current prospects for coups in Latin America. They are: Rut Diamint of the University Torcuatto de Tella in Buenos Aires, Argentina; Pablo Policzer of the University of Calgary in Canada; and Michael Shifter of the Inter-American Dialogue in Washington, DC. Each looks at the potential for coups from different perspectives but, all three come to similar conclusions. That is, that despite substantial gains in democracy, the threat of coups in Latin America remains latent. The authors agree that democracy is growing in the region. Opinion surveys such as the Americas Barometer consistently show that citizens in Latin America have gradually incorporated democracy as part of their core value system. Yet, the authors argue convincingly that Latin America faces new types of interruptions to its democratic process that should be considered coups, even if not following the traditional style of military coup that predominated in the past. Situations that have taken place in Peru, Ecuador, Nicaragua, Honduras and other countries serve to illustrate the new trends. More specifically, Professor Diamint argues that in Latin America a culture of intolerance, demonization of the opposition, and the utilization of any method to achieve power prevails. In a region with a very high threshold of violence, governments fail to set an example of establishing a culture of debate, consensus, and transparency. This culture is inclined to uncontrollable political expressions, preferring confrontational means to resolve conflict. Within this scenario, “messianic” solutions are promoted and coups cannot be discarded as an option that would never transpire. Professor Policzer looks more closely to the constitutional loopholes that allow for a transformation of limited into absolute power. He argues that coups can be constitutional or unconstitutional, and that a constitutional coup can occur when violations to democracy actually stem from the constitutions themselves. In Honduras, for example specific provisions in the Constitution itself created conditions for a constitutional crisis; similar provisions have also led to constitutional authoritarianism in Venezuela and other countries. Dr. Policzer stresses that when a head of state or the military take absolute power, even temporarily, based on provisions in their constitutions; they are in essence staging a constitutional coup. These blind spots in constitutions, he argues, may be more serious threat to democracy than that of traditional coups. Lastly, Dr. Shifter argues that some kind of coup should be expected in Latin America in coming years, not only because fundamental institutions remain weak in some countries, but because the regional political environment is less prepared to respond effectively to transgressions than it was a few years ago. The good news, however, is that only a handful of countries, show no interest in governing. The bad news is that in those few countries where situations are indeed shaky, they are also in some cases aggravated by rising food and fuel prices, and spreading criminality, which pose serious risks to the rule of law and democratic governance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been years since the introduction of the Dynamic Network Optimization (DNO) concept, yet the DNO development is still at its infant stage, largely due to a lack of breakthrough in minimizing the lengthy optimization runtime. Our previous work, a distributed parallel solution, has achieved a significant speed gain. To cater for the increased optimization complexity pressed by the uptake of smartphones and tablets, however, this paper examines the potential areas for further improvement and presents a novel asynchronous distributed parallel design that minimizes the inter-process communications. The new approach is implemented and applied to real-life projects whose results demonstrate an augmented acceleration of 7.5 times on a 16-core distributed system compared to 6.1 of our previous solution. Moreover, there is no degradation in the optimization outcome. This is a solid sprint towards the realization of DNO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipid nanoballoons integrating multiple emulsions of the type water-in-oil-in-water enclose, at least in theory, a biomimetic aqueous-core suitable for housing hydrophilic biomolecules such as proteins, peptides and bacteriophage particles. The research effort entertained in this paper reports a full statistical 23x31 factorial design study (three variables at two levels and one variable at three levels) to optimize biomimetic aqueous-core lipid nanoballoons for housing hydrophilic protein entities. The concentrations of protein, lipophilic and hydrophilic emulsifiers, and homogenization speed were set as the four independent variables, whereas the mean particle hydrodynamic size (HS), zeta potential (ZP) and polydispersity index (PI) were set as the dependent variables. The V23x31 factorial design constructed led to optimization of the higher (+1) and lower (-1) levels, with triplicate testing for the central (0) level, thus producing thirty three experiments and leading to selection of the optimized processing parameters as 0.015% (w/w) protein entity, 0.75% (w/w) lipophilic emulsifier (soybean lecithin) and 0.50% (w/w) hydrophilic emulsifier (poloxamer 188). In the present research effort, statistical optimization and production of protein derivatives encompassing full stabilization of their three-dimensional structure, has been attempted via housing said molecular entities within biomimetic aqueous-core lipid nanoballoons integrating a multiple (W/O/W) emulsion.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A micellar nanocontainer delivery and release system is designed on the basis of a peptide-polymer conjugate. The hybrid molecules self-assemble into micelles comprising a modified amyloid peptide core surrounded by a PEG corona. The modified amyloid peptide previously studied in our group forms helical ribbons based on a beta-sheet motif and contains beta-amino acids that are excluded from the beta-sheet structure, thus being potentially useful as fibrillization inhibitors. In the model peptide-PEG hybrid system studied, enzymatic degradation using alpha-chymotrypsin leads to selective cleavage close to the PEG-peptide linkage, break up of the micelles, and release of peptides in unassociated form. The release of monomeric peptide is useful because aggregation of the released peptide into beta-sheet amyloid fibrils is not observed. This concept has considerable potential in the targeted delivery of peptides for therapeutic applications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

TNF alpha is an important mediator of catabolism in cachexia. Most of its effects have been characterized in peripheral tissues, such as skeletal muscle and fat. However, by acting directly in the hypothalamus, TNF alpha can activate thermogenesis and modulate food intake. Here we show that high concentration TNF alpha in the hypothalamus leads to increased O(2) consumption/CO(2) production, increased body temperature, and reduced caloric intake, resulting in loss of body mass. Most of the thermogenic response is produced by beta 3-adrenergic signaling to the brown adipose tissue (BAT), leading to increased BAT relative mass, reduction in BAT lipid quantity, and increased BAT mitochondria density. The expression of proteins involved in BAT thermogenesis, such as beta 3-adrenergic receptor, peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha, and uncoupling protein-1, are increased. In the hypothalamus, TNF alpha produces reductions in neuropeptide Y, agouti gene-related peptide, proopiomelanocortin, and melanin-concentrating hormone, and increases CRH and TRH. The activity of the AMP-activated protein kinase signaling pathway is also decreased in the hypothalamus of TNF alpha-treated rats. Upon intracerebroventricular infliximab treatment, tumor-bearing and septic rats present a significantly increased survival. In addition, the systemic inhibition of beta 3-adrenergic signaling results in a reduced body mass loss and increased survival in septic rats. These data suggest hypothalamic TNF alpha action to be important mediator of the wastage syndrome in cachexia. (Endocrinology 151: 683-694, 2010)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The SPPS methodology has continuously been investigated as a valuable model to monitor the solvation properties of polymeric materials. In this connection, the present work applied HRMAS-NMR spectroscopy to examine the dynamics of an aggregating peptide sequence attached to a resin core with varying peptide loading (up to 80%) and solvent system. Low and high substituted BHAR were used for assembling the VQAAIDYING sequence and some of its minor fragments. The HRMAS-NMR results were in agreement with the swelling of each resin, i.e. there was an improved resolution of resonance peaks in the better solvated conditions. Moreover, the peptide loading and the attached peptide sequence also affected the spectra. Strong peptide chain aggregation was observed mainly in highly peptide loaded resins when solvated in CDCl3. Conversely, due to the better swelling of these highly loaded resins in DMSO, improved NMR spectra were acquired in this polar aprotic solvent, thus enabling the detection of relevant sequence-dependent conformational alterations. The more prominent aggregation was displayed by the VQAAIDYING segment and not by any of its intermediary fragments and these findings were also corroborated by EPR studies of these peptide-resins labelled properly with an amino acid-type spin probe. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Lipids are used for the evaluation of the different organic matter contributions in the north eastern Norwegian sea (M23258 site; 75ºN, 14ºE) over the last 15,000 years. Development of a mass balance model based on the down core quantification of the C37 alkenones, the odd carbon numbered n-alkanes (Aodd) and the unresolved complex mixture of hydrocarbons (UCM) has allowed three main organic matter inputs involving marine, continental and ancient reworked organic matter to be recognized. The model shows a good agreement between measured and reconstructed TOC values. Similarly, a strong parallelism is observed between predicted components such as marine TOC and carbonate content (CaCO3), which was determined independently. Representation of the model results within a time-scale based on 15 AMS-14C measurements shows that the main changes in organic matter constituents are coincident with the major climatic events of the last 15,000 a. Thus, the predominance of reworked organic matter is characteristic of Termination Ia (up to 70%), continental organic matter was dominant during the Bølling-Allerød (B-A) and Younger Dryas (YD) periods (about 85%) and a strong increase of marine organic matter occurred in the Holocene (between 50 and 75%). This agreement reflects the main hydrographic changes that determined the deposition of sedimentary materials during the period studied: ice-rafted detritus from the Barents continental platform, ice-melting waters from the Arctic fluvial system discharging into the Barents sea and dominance of north Atlantic currents, respectively. In this respect, the high-resolution down core record resulting from the mass balance and lipid measurements allows the identification of millennial-scale events such as the increase of reworked organic matter at the final retreat of the Barents ice sheet at the end of the deglaciation period (Termination Ib).