935 resultados para Lipid - Metabolism -Disorders


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ApoE is secreted by macrophages at the lesion site of the atherosclerotic plaque, where it is thought to play a protective role against atherosclerosis independently of its effects on lipid metabolism. Of the three common isoforms for apoE, apoE4 is associated with higher risk of cardiovascular disease (CVD). In vitro studies have shown that recombinant apoE may act as an antioxidant in an isoform-dependent manner (E2 > E3 > E4). The oxidative status of the macrophages plays a key role in the process of atherosclerosis. In the present study the possible differential actions of apoE3 and apoE4 on several parameters of oxidative status were determined in stably transfected murine macrophages (RAW 2647-apoE3 and apoE4). No differences between genotypes were observed after peroxide challenge in either protection against cytotoxicity or in cell membrane oxidation, and modest differences were observed in the non-enzymatic antioxidants (glutathione and a-tocopherol) in apoE3 v. apoE4 macrophages. Importantly, cells secreting apoE4 showed increased membrane oxidation under basal conditions, and produced more NO and superoxide anion radicals than the apoE3 macrophages after stimulation. The present data suggest that apoE genotype influences the oxidative status of macrophages, and this could partly contribute to the higher CVD risk observed in apoE4 carriers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triacylglycerol (TAG) synthesis. Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genetic determinants of lipid metabolism to affect MetS risk. We investigated the relationship between ACSL1 polymorphisms (rs4862417, rs6552828, rs13120078, rs9997745, and rs12503643) and MetS risk and determined potential interactions with dietary fat in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1,754). GG homozygotes for rs9997745 had increased MetS risk {odds ratio (OR) 1.90 [confidence interval (CI) 1.15, 3.13]; P = 0.01}, displayed elevated fasting glucose (P = 0.001) and insulin concentrations (P = 0.002) and increased insulin resistance (P = 0.03) relative to the A allele carriers. MetS risk was modulated by dietary fat, whereby the risk conferred by GG homozygosity was abolished among individuals consuming either a low-fat (<35% energy) or a high-PUFA diet (>5.5% energy). In conclusion, ACSL1 rs9997745 influences MetS risk, most likely via disturbances in fatty acid metabolism, which was modulated by dietary fat consumption, particularly PUFA intake, suggesting novel gene-nutrient interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Vagal stimulation in response to nutrients is reported to elicit an array of digestive and endocrine responses, including an alteration in postprandial lipid metabolism. Objective: The objective of this study was to assess whether neural stimulation could alter hormone and substrate metabolism during the late postprandial phase, with implications for body fat mobilization. Design: Vagal stimulation was achieved by using the modified sham feeding (MSF) technique, in which nutrients are chewed and tasted but not swallowed. Ten healthy subjects were studied on 3 separate occasions, 4 wk apart. Five hours after a high-fat breakfast (56 g fat), the subjects were given 1 of 3 test meals allocated in random order: water, a lunch containing a modest amount of fat (38 g), or MSF (38 g fat). Blood was collected for 3 h poststimulus for hormone and metabolite analyses. Results: Plasma insulin and pancreatic polypeptide concentrations peaked at 250% and 209% of baseline concentrations within 15 min of MSF. The plasma glucose concentration increased significantly (P = 0.038) in parallel with the changes observed in the plasma insulin concentration. The nonesterified fatty acid concentration was significantly suppressed (P = 0.006); maximum suppression occurred at a mean time of 114 min after MSF. This fall in nonesterified fatty acid was accompanied by a fall in the plasma glucagon concentration from 122 to 85 pmol/L (P = 0.018) at a mean time of 113 min after MSF. Conclusions: Effects on substrate metabolism after MSF in the postprandial state differ from those usually reported in the postabsorptive state. The effects of MSF were prolonged beyond the period of the cephalic response and these may be relevant for longer-term metabolic regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study assessed the efficacy of fish oil supplementation in counteracting the classic dyslipidemia of the atherogenic lipoprotein phenotype (ALP). In addition, the impact of the common apolipoprotein E (apoE) polymorphism on the fasting and postprandial lipid profile and on responsiveness to the dietary intervention was established. Fifty-five ALP males (aged 34 to 69 years, body mass index 22 to 35 kg/m2, triglyceride [TG] levels 1.5 to 4.0 mmol/L, high density lipoprotein cholesterol [HDL-C] <1.1 mmol/l, and percent low density lipoprotein [LDL]-3 >40% total LDL) completed a randomized placebo-controlled crossover trial of fish oil (3.0 g eicosapentaenoic acid/docosahexaenoic acid per day) and placebo (olive oil) capsules with the 6-week treatment arms separated by a 12-week washout period. In addition to fasting blood samples, at the end of each intervention arm, a postprandial assessment of lipid metabolism was carried out. Fish oil supplementation resulted in a reduction in fasting TG level of 35% (P<0.001), in postprandial TG response of 26% (TG area under the curve, P<0.001), and in percent LDL-3 of 26% (P<0.05). However, no change in HDL-C levels was evident (P=0.752). ANCOVA showed that baseline HDL-C levels were significantly lower in apoE4 carriers (P=0.035). The apoE genotype also had a striking impact on lipid responses to fish oil intervention. Individuals with an apoE2 allele displayed a marked reduction in postprandial incremental TG response (TG incremental area under the curve, P=0.023) and a trend toward an increase in lipoprotein lipase activity relative to non-E2 carriers. In apoE4 individuals, a significant increase in total cholesterol and a trend toward a reduction in HDL-C relative to the common homozygous E3/E3 profile was evident. Our data demonstrate the efficacy of fish oil fatty acids in counteracting the proatherogenic lipid profile of the ALP but also that the apoE genotype influences responsiveness to this dietary treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A longitudinal study of carbohydrate and lipid metabolism in normal pregnant volunteers demonstrated distinct alterations in maternal fuel utilization as pregnancy progresses. Glucose uptake into maternal adipose tissue and plasma glucose levels were significantly reduced in late pregnancy compared to early pregnancy and post-partum values. Plasma fatty acids, glycerol and ketone levels were elevated in late pregnancy. This confirms the concept of the third trimester as a catabolic phase within the maternal system, and provides support for the view that the insulin resistance of pregnancy may be a compensatory response to overcome the inhibitive effects of metabolites such as fatty acids on peripheral uptake of glucose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blood lipid response to a given dietary intervention could be determined by the effect of diet, gene variants or gene–diet interactions. The objective of the present study was to investigate whether variants in presumed nutrient-sensitive genes involved in lipid metabolism modified lipid profile after weight loss and in response to a given diet, among overweight European adults participating in the Diet Obesity and Genes study. By multiple linear regressions, 240 SNPs in twenty-four candidate genes were investigated for SNP main and SNP–diet interaction effects on total cholesterol, LDL-cholesterol, HDL-cholesterol and TAG after an 8-week low-energy diet (only main effect), and a 6-month ad libitum weight maintenance diet, with different contents of dietary protein or glycaemic index. After adjusting for multiple testing, a SNP–dietary protein interaction effect on TAG was identified for lipin 1 (LPIN1) rs4315495, with a decrease in TAG of − 0·26 mmol/l per A-allele/protein unit (95 % CI − 0·38, − 0·14, P= 0·000043). In conclusion, we investigated SNP–diet interactions for blood lipid profiles for 240 SNPs in twenty-four candidate genes, selected for their involvement in lipid metabolism pathways, and identified one significant interaction between LPIN1 rs4315495 and dietary protein for TAG concentration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS: Lipoprotein lipase (LPL), a pivotal enzyme in lipoprotein metabolism, catalyzes the hydrolysis of triglycerides of very low-density lipoproteins and chylomicrons. Assuming that the variants in the promoter of the LPL gene may be associated with changes in lipid metabolism leading to obesity and type 2 diabetes, we examined the role of promoter variants (-T93G and -G53C) in the LPL gene in an urban South Indian population. METHODS: The study subjects (619 type 2 diabetic and 731 normal glucose-tolerant (NGT) subjects) were chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP). Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. RESULTS: The two polymorphisms studied were not in LD. The -T93G was not associated with type 2 diabetes but was associated with obesity. 11.5% of the obese subjects (62/541) had the XG(TG+GG) genotype compared with 6.4% of the nonobese subjects (52/809; P=0.001). The odds ratio for obesity for the XG genotype was 1.766 (95% CI: 1.19-2.63, P=0.005). Subjects with XG genotype also had higher body mass index and waist circumference compared with those with TT genotype. With respect to G53C, subjects with the XC(GC+CC) genotype had 0.527 and 0.531 times lower risk for developing type 2 diabetes and obesity, respectively. CONCLUSIONS: Among Asian Indians, the -T93G SNP of the LPL gene is associated with obesity but not type 2 diabetes, whereas the -G53C SNP appears to be protective against both obesity and type 2 diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alterations in the composition and metabolic activity of the gut microbiota appear to contribute to the development of obesity and associated metabolic diseases. However, the extent of this relationship remains unknown. Modulating the gut microbiota with non-digestible carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic pathways including changes to appetite regulation, glucose and lipid metabolism and inflammation. The NDC vary in physicochemical structure and this may govern their physical properties and fermentation by specific gut bacterial populations. Much research in this area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligosaccharides); however, there is increasing interest in the metabolic effects of other NDC, such as resistant dextrin. Data presented in this review provide evidence from mechanistic and intervention studies that certain fermentable NDC, including resistant dextrin, are able to modulate the gut microbiota and may alter metabolic process associated with obesity, including appetite regulation, energy and lipid metabolism and inflammation. To confirm these effects and elucidate the responsible mechanisms, further well-controlled human intervention studies are required to investigate the impact of NDC on the composition and function of the gut microbiota and at the same time determine concomitant effects on host metabolism and physiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is now considerable scientific evidence that a diet rich in fruits and vegetables can improve human health and protect against chronic diseases. However, it is not clear whether different fruits and vegetables have distinct beneficial effects. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fiber. A major proportion of the bioactive components in apples, including the high molecular weight polyphenols, escape absorption in the upper gastrointestinal tract and reach the large intestine relatively intact. There, they can be converted by the colonic microbiota to bioavailable and biologically active compounds with systemic effects, in addition to modulating microbial composition. Epidemiological studies have identified associations between frequent apple consumption and reduced risk of chronic diseases such as cardiovascular disease. Human and animal intervention studies demonstrate beneficial effects on lipid metabolism, vascular function and inflammation but only a few studies have attempted to link these mechanistically with the gut microbiota. This review will focus on the reciprocal interaction between apple components and the gut microbiota, the potential link to cardiovascular health and the possible mechanisms of action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coconut, Cocos nucifera L. is a major plantation crop, which ensures income for millions of people in the tropical region. Detailed molecular studies on zygotic embryo development would provide valuable clues for the identification of molecular markers to improve somatic embryogenesis. Since there is no ongoing genome project for this species, coconut expressed sequence tags (EST) would be an interesting technique to identify important coconut embryo specific genes as well as other functional genes in different biochemical pathways. The goal of this study was to analyse the ESTs by examining the transcriptome data of the different embryo tissue types together with one somatic tissue. Here, four cDNA libraries from immature embryo, mature embryo, microspore derived embryo and mature leaves were constructed. cDNA was sequenced by the Roche-454 GS-FLX system and assembled into 32621 putative unigenes and 155017 singletons. Of these unigenes, 18651 had significant sequence similarities to non-redundant protein database, from which 16153 were assigned to one or more gene ontology categories. Homologue genes, which are responsible for embryo development such as chitinase, beta-1,3-glucanase, ATP synthase CF0 subunit, thaumatin-like protein and metallothionein-like protein were identified among the embryo EST collection. Of the unigenes, 6694 were mapped into 139 KEGG pathways including carbohydrate metabolism, energy metabolism, lipid metabolism, amino acid metabolism and nucleotide metabolism. This collection of 454-derived EST data generated from different tissue types provides a significant resource for genome wide studies and gene discovery of coconut, a non-model species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypercholesterolemic hamsters were fed for 4 wk on diets rich in saturated fatty acids and cholesterol, differing only in protein source (20%): casein (control group, HC), whole cowpea seed (HWS), and cowpea protein isolate (HPI). Hamsters fed on HWS and HPI presented significant reductions in plasma total cholesterol and non-HDL cholesterol. HPI and HC presented similar protein digestibility, which were significantly higher than that of HWS. Animals fed on HWS presented significantly higher levels of bile acids and cholesterol in feces than did the animals fed on casein or HPI diets. Histological analyses of the liver showed that HC diet resulted in steatosis widely distributed throughout the hepatic lobule, while HWS and HPI diets promoted reductions in liver steatosis. The effectiveness of HWS for modulating lipid metabolism was greater than that of HPI, as measured by plasma cholesterol reduction and liver steatosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate the role of cyclooxygenase (COX) in venous vascular reactivity changes after an oral lipid overload (OLO). Venous endothelial function (dorsal hand vein technique) was evaluated in fasting, 30 minutes after COX inhibition (aspirin-fasting), 2 to 4 hours after an OLO (1000 kcal, 58% fat), and again after COX inhibition (aspirin-OLO, 600 mg/200 mL water) in 10 healthy adults (age, 28.1 +/- 1.3 years; body mass index, 22.3 +/- 0.6 kg/m(2)). Fasting, 2- to 4-hour post-OLO, and 60-minute postaspirin plasma glucose, insulin, and lipids were also evaluated. The OLO increased triglycerides and insulin, reduced low-density lipoprotein and high-density lipoprotein, but glycemia and total cholesterol remained unchanged. There were no metabolic differences between OLO and aspirin-OLO. In fasting, aspirin reduced acetylcholine-induced venodilation (107.0% +/- 14% versus 57.3% +/- 11%; P < 0.001). Vascular reactivity was blunted after the OLO (phenylephrine dose: 0.3 +/- 0.2 fasting versus 1.9 +/- 0.8 nmol/min after OLO; P < 0.001) and was partially corrected by aspirin (0.4 +/- 0.2; P < 0.001). Similar changes were observed in maximum venodilation after acetylcholine (107.0% +/- 14% fasting versus 60.4% +/- 9% after OLO, P < 0.001; aspirin-OLO: 95.9% +/- 6%; P < 0.001). The responses to sodium nitroprusside remained unchanged during the study. We conclude that the OLO reduction in the endothelium-dependent venoconstruction and venodilation is partially the result of the action of COX.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dietary soy lecithin supplementation decreases hyperlipidemia and influences lipid metabolism. Although this product is used by diabetic patients, there are no data about the effect of soy lecithin supplementation on the immune system. The addition of phosphatidylcholine, the main component of lecithin, to a culture of lymphocytes has been reported to alter their function. If phosphatidylcholine changes lymphocyte functions in vitro as previously shown, then it could also affect immune cells in vivo. In the present study, the effect of dietary soy lecithin oil macrophage phagocytic capacity and on lymphocyte number in response to concanavalin A (ConA) stimulation was investigated in non-diabetic and alloxan-induced diabetic rats. Supplementation was carried Out daily with 2 g kg(-1) b.w. lecithin during 7 days. After that, blood was drawn from fasting rats and peritoneal macrophages and mesenteric lymph node lymphocytes were collected to determine the phospholipid content. Plasma triacylglycerol (TAG), total and HDL cholesterol and glucose levels were also determined. Lymphocytes were stimulated by Conk The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye reduction method and flow cytometry were employed to evaluate lymphocyte metabolism and cell number, respectively. Soy lecithin supplementation significantly increased both macrophage phagocytic capacity (+29%) in non-diabetic rats and the lymphocyte number in diabetic rats (+92%). It is unlikely that plasma lipid levels indirectly affect immune cells, since plasma cholesterol, TAG, or phospholipid content was not modified by lecithin supplementation. In Conclusion, lymphocyte and macrophage function were altered by lecithin supplementation, indicating ail immunomodulatory effect of phosphatidylcholine. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obesity and insulin resistance are highly correlated with metabolic disturbances. Both the excess and lack of adipose tissue can lead to severe insulin resistance and diabetes. Adipose tissue plays an active role in energy homeostasis, hormone secretion, and other proteins that affect insulin sensitivity, appetite, energy balance, and lipid metabolism. Rats with streptozotocin-induced diabetes during the neonatal period develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, and insulin resistance in adulthood. Low body weight and reduced epididymal (EP) fit mass were also seen in this model. The am) of this study was to investigate the glucose homeostasis and metabolic repercussions on the adipose tissue following chronic treatment with antidiabetic drugs in these animals. In the 4th week post birth, diabetic animals started an 8-week treatment with pioglitazone, metformin, or insulin.