923 resultados para Linear mixed effect models
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Objective: To investigate the lag structure effects from exposure to atmospheric pollution in acute outbursts in hospital admissions of paediatric rheumatic diseases (PRDs). Methods: Morbidity data were obtained from the Brazilian Hospital Information System in seven consecutive years, including admissions due to seven PRDs (juvenile idiopathic arthritis, systemic lupus erythematosus, dermatomyositis, Henoch-Schonlein purpura, polyarteritis nodosa, systemic sclerosis and ankylosing spondylitis). Cases with secondary diagnosis of respiratory diseases were excluded. Daily concentrations of inhaled particulate matter (PM10), sulphur dioxide (SO2) nitrogen dioxide (NO2), ozone (O-3) and carbon monoxide (CO) were evaluated. Generalized linear Poisson regression models controlling for short-term trend, seasonality, holidays, temperature and humidity were used. Lag structures and magnitude of air pollutants' effects were adopted to estimate restricted polynomial distributed lag models. Results: The total number of admissions due to acute outbursts PRD was 1,821. The SO2 interquartile range (7.79 mu g/m(3)) was associated with an increase of 1.98% (confidence interval 0.25-3.69) in the number of hospital admissions due to outcome studied after 14 days of exposure. This effect was maintained until day 17. Of note, the other pollutants, with the exception of O-3, showed an increase in the number of hospital admissions from the second week. Conclusion: This study is the first to demonstrate a delayed association between SO2 and PRD outburst, suggesting that oxidative stress reaction could trigger the inflammation of these diseases. Lupus (2012) 21, 526-533.
Resumo:
In this report, we investigate the polarization effect (linear, elliptical and circular) on the two-photon absorption (2PA) properties of a chiral compound based in azoaromatic moieties using the femtosecond Z-scan technique with low repetition rate and low pulse energy. We observed a strong 2PA modulation between 800 nm and 960 nm as a function the polarization changes from linear through elliptical to circular. Such results were interpreted employing the sum-over-essential states approach, which allowed us to model the 2PA circular-linear dichroism effect and to identifier the overlapping of the excited electronic states responsible by the 2PA allowed band. (C) 2012 Optical Society of America
Resumo:
The main goal of this article is to consider influence assessment in models with error-prone observations and variances of the measurement errors changing across observations. The techniques enable to identify potential influential elements and also to quantify the effects of perturbations in these elements on some results of interest. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease.
Resumo:
Quality of life is an important outcome in the treatment of patients with schizophrenia. It has been suggested that patients' quality of life ratings (referred to as subjective quality of life, SQOL) might be too heavily influenced by symptomatology to be a valid independent outcome criterion. There has been only limited evidence on the association of symptom change and changes in SQOL over time. This study aimed to examine the association between changes in symptoms and in SQOL among patients with schizophrenia. A pooled data set was obtained from eight longitudinal studies that had used the Brief Psychiatric Rating Scale (BPRS) for measuring psychiatric symptoms and either the Lancashire Quality of Life Profile or the Manchester Short Assessment of Quality of Life for assessing SQOL. The sample comprised 886 patients with schizophrenia. After controlling for heterogeneity of findings across studies using linear mixed models, a reduction in psychiatric symptoms was associated with improvements in SQOL scores. In univariate analyses, changes in all BPRS subscales were associated with changes in SQOL scores. In a multivariate model, only associations between changes in the BPRS depression/anxiety and hostility subscales and changes in SQOL remained significant, with 5% and 0.5% of the variance in SQOL changes being attributable to changes in depression/anxiety and hostility respectively. All BPRS subscales together explained 8.5% of variance. The findings indicate that SQOL changes are influenced by symptom change, in particular in depression/anxiety. The level of influence is limited and may not compromise using SQOL as an independent outcome measure.
Resumo:
Subjective quality of life (SQOL) is an important outcome in the treatment of patients with schizophrenia. However, there is only limited evidence on factors influencing SQOL, and little is known about whether the same factors influence SQOL in patients with schizophrenia and other mental disorders. This study aimed to identify the factors associated with SQOL and test whether these factors are equally important in schizophrenia and other disorders. For this we used a pooled data set obtained from 16 studies that had used either the Lancashire Quality of Life Profile or the Manchester Short Assessment of Quality of Life for assessing SQOL. The sample comprised 3936 patients with schizophrenia, mood disorders, and neurotic disorders. After controlling for confounding factors, within-subject clustering, and heterogeneity of findings across studies in linear mixed models, patients with schizophrenia had more favourable SQOL scores than those with mood and neurotic disorders. In all diagnostic groups, older patients, those in employment, and those with lower symptom scores had higher SQOL scores. Whilst the strength of the association between age and SQOL did not differ across diagnostic groups, symptom levels were more strongly associated with SQOL in neurotic than in mood disorders and schizophrenia. The association of employment and SQOL was stronger in mood and neurotic disorders than in schizophrenia. The findings may inform the use and interpretation of SQOL data for patients with schizophrenia.
Resumo:
Despite the numerous health benefits, population physical activity levels are low and declining with age. A continued increase of Internet access allows for website-delivered interventions to be implemented across age-groups, though older people have typically not been considered for this type of intervention. Therefore, the purpose of this study was to evaluate a website-delivered computer-tailored physical activity intervention, with a specific focus on differences in tailored advice acceptability, website usability, and physical activity change between three age-groups. To mimic "real-life" conditions, the intervention, which provided personalized physical activity feedback delivered via the Internet, was implemented and evaluated without any personal contact for the entire duration of the study. Data were collected online at baseline, 1-week, and 1-month follow-up and analyzed for three age-groups (≤44, 45-59, and ≥60 years) using linear mixed models. Overall, 803 adults received the intervention and 288 completed all measures. The oldest age-group increased physical activity more than the other two groups, spent the most time on the website, though had significantly lower perceived Internet self-confidence scores when compared with the youngest age-group. No differences were found in terms of website usability and tailored advice acceptability. These results suggest that website-delivered physical activity interventions can be suitable and effective for older aged adults.
Resumo:
Generalized linear mixed models (GLMM) are generalized linear models with normally distributed random effects in the linear predictor. Penalized quasi-likelihood (PQL), an approximate method of inference in GLMMs, involves repeated fitting of linear mixed models with “working” dependent variables and iterative weights that depend on parameter estimates from the previous cycle of iteration. The generality of PQL, and its implementation in commercially available software, has encouraged the application of GLMMs in many scientific fields. Caution is needed, however, since PQL may sometimes yield badly biased estimates of variance components, especially with binary outcomes. Recent developments in numerical integration, including adaptive Gaussian quadrature, higher order Laplace expansions, stochastic integration and Markov chain Monte Carlo (MCMC) algorithms, provide attractive alternatives to PQL for approximate likelihood inference in GLMMs. Analyses of some well known datasets, and simulations based on these analyses, suggest that PQL still performs remarkably well in comparison with more elaborate procedures in many practical situations. Adaptive Gaussian quadrature is a viable alternative for nested designs where the numerical integration is limited to a small number of dimensions. Higher order Laplace approximations hold the promise of accurate inference more generally. MCMC is likely the method of choice for the most complex problems that involve high dimensional integrals.
Resumo:
In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.
Resumo:
This paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal/clustered data, conditional logistic regression for matched case-control studies, multivariate measurement error models, generalized linear mixed models with a semiparametric component, and many others. We propose profile-kernel and backfitting estimation methods for these problems, derive their asymptotic distributions, and show that in likelihood problems the methods are semiparametric efficient. While generally not true, with our methods profiling and backfitting are asymptotically equivalent. We also consider pseudolikelihood methods where some nuisance parameters are estimated from a different algorithm. The proposed methods are evaluated using simulation studies and applied to the Kenya hemoglobin data.
Resumo:
Multiple outcomes data are commonly used to characterize treatment effects in medical research, for instance, multiple symptoms to characterize potential remission of a psychiatric disorder. Often either a global, i.e. symptom-invariant, treatment effect is evaluated. Such a treatment effect may over generalize the effect across the outcomes. On the other hand individual treatment effects, varying across all outcomes, are complicated to interpret, and their estimation may lose precision relative to a global summary. An effective compromise to summarize the treatment effect may be through patterns of the treatment effects, i.e. "differentiated effects." In this paper we propose a two-category model to differentiate treatment effects into two groups. A model fitting algorithm and simulation study are presented, and several methods are developed to analyze heterogeneity presenting in the treatment effects. The method is illustrated using an analysis of schizophrenia symptom data.
Resumo:
We establish a fundamental equivalence between singular value decomposition (SVD) and functional principal components analysis (FPCA) models. The constructive relationship allows to deploy the numerical efficiency of SVD to fully estimate the components of FPCA, even for extremely high-dimensional functional objects, such as brain images. As an example, a functional mixed effect model is fitted to high-resolution morphometric (RAVENS) images. The main directions of morphometric variation in brain volumes are identified and discussed.
Resumo:
BACKGROUND: Few data are available on the long-term immunologic response to antiretroviral therapy (ART) in resource-limited settings, where ART is being rapidly scaled up using a public health approach, with a limited repertoire of drugs. OBJECTIVES: To describe immunologic response to ART among ART patients in a network of cohorts from sub-Saharan Africa, Latin America, and Asia. STUDY POPULATION/METHODS: Treatment-naive patients aged 15 and older from 27 treatment programs were eligible. Multilevel, linear mixed models were used to assess associations between predictor variables and CD4 cell count trajectories following ART initiation. RESULTS: Of 29 175 patients initiating ART, 8933 (31%) were excluded due to insufficient follow-up time and early lost to follow-up or death. The remaining 19 967 patients contributed 39 200 person-years on ART and 71 067 CD4 cell count measurements. The median baseline CD4 cell count was 114 cells/microl, with 35% having less than 100 cells/microl. Substantial intersite variation in baseline CD4 cell count was observed (range 61-181 cells/microl). Women had higher median baseline CD4 cell counts than men (121 vs. 104 cells/microl). The median CD4 cell count increased from 114 cells/microl at ART initiation to 230 [interquartile range (IQR) 144-338] at 6 months, 263 (IQR 175-376) at 1 year, 336 (IQR 224-472) at 2 years, 372 (IQR 242-537) at 3 years, 377 (IQR 221-561) at 4 years, and 395 (IQR 240-592) at 5 years. In multivariable models, baseline CD4 cell count was the most important determinant of subsequent CD4 cell count trajectories. CONCLUSION: These data demonstrate robust and sustained CD4 response to ART among patients remaining on therapy. Public health and programmatic interventions leading to earlier HIV diagnosis and initiation of ART could substantially improve patient outcomes in resource-limited settings.
Resumo:
This paper treats the problem of setting the inventory level and optimizing the buffer allocation of closed-loop flow lines operating under the constant-work-in-process (CONWIP) protocol. We solve a very large but simple linear program that models an entire simulation run of a closed-loop flow line in discrete time to determine a production rate estimate of the system. This approach introduced in Helber, Schimmelpfeng, Stolletz, and Lagershausen (2011) for open flow lines with limited buffer capacities is extended to closed-loop CONWIP flow lines. Via this method, both the CONWIP level and the buffer allocation can be optimized simultaneously. The first part of a numerical study deals with the accuracy of the method. In the second part, we focus on the relationship between the CONWIP inventory level and the short-term profit. The accuracy of the method turns out to be best for such configurations that maximize production rate and/or short-term profit.