992 resultados para Linear erosion processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this chapter, we elaborate on the well-known relationship between Gaussian processes (GP) and Support Vector Machines (SVM). Secondly, we present approximate solutions for two computational problems arising in GP and SVM. The first one is the calculation of the posterior mean for GP classifiers using a `naive' mean field approach. The second one is a leave-one-out estimator for the generalization error of SVM based on a linear response method. Simulation results on a benchmark dataset show similar performances for the GP mean field algorithm and the SVM algorithm. The approximate leave-one-out estimator is found to be in very good agreement with the exact leave-one-out error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In present day knowledge societies political decisions are often justified on the basis of scientific expertise. Traditionally, a linear relation between knowledge production and application was postulated which would lead, with more and better science, to better policies. Empirical studies in Science and Technology studies have essentially demolished this idea. However, it is still powerful, not least among practitioners working in fields where decision making is based on large doses of expert knowledge. Based on conceptual work in the field of Science and Technology Studies (STS) I shall examine two cases of global environmental governance, ozone layer protection and global climate change. I will argue that hybridization and purification are important for two major forms of scientific expertise. One is delivered though scientific advocacy (by individual scientists or groups of scientists), the other through expert committees, i.e. institutionalized forms of collecting and communicating expertise to decision makers. Based on this analysis lessons will be drawn, also with regard to the stalling efforts at establishing an international forestry regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following adaptation to an oriented (1-d) signal in central vision, the orientation of subsequently viewed test signals may appear repelled away from or attracted towards the adapting orientation. Small angular differences between the adaptor and test yield 'repulsive' shifts, while large angular differences yield 'attractive' shifts. In peripheral vision, however, both small and large angular differences yield repulsive shifts. To account for these tilt after-effects (TAEs), a cascaded model of orientation estimation that is optimized using hierarchical Bayesian methods is proposed. The model accounts for orientation bias through adaptation-induced losses in information that arise because of signal uncertainties and neural constraints placed upon the propagation of visual information. Repulsive (direct) TAEs arise at early stages of visual processing from adaptation of orientation-selective units with peak sensitivity at the orientation of the adaptor (theta). Attractive (indirect) TAEs result from adaptation of second-stage units with peak sensitivity at theta and theta+90 degrees , which arise from an efficient stage of linear compression that pools across the responses of the first-stage orientation-selective units. A spatial orientation vector is estimated from the transformed oriented unit responses. The change from attractive to repulsive TAEs in peripheral vision can be explained by the differing harmonic biases resulting from constraints on signal power (in central vision) versus signal uncertainties in orientation (in peripheral vision). The proposed model is consistent with recent work by computational neuroscientists in supposing that visual bias reflects the adjustment of a rational system in the light of uncertain signals and system constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the design and implementation of an interactive dynamic simulator called DASPRII. The starting point of this research has been an existing dynamic simulation package, DASP. DASPII is written in standard FORTRAN 77 and is implemented on universally available IBM-PC or compatible machines. It provides a means for the analysis and design of chemical processes. Industrial interest in dynamic simulation has increased due to the recent increase in concern over plant operability, resiliency and safety. DASPII is an equation oriented simulation package which allows solution of dynamic and steady state equations. The steady state can be used to initialise the dynamic simulation. A robust non linear algebraic equation solver has been implemented for steady state solution. This has increased the general robustness of DASPII, compared to DASP. A graphical front end is used to generate the process flowsheet topology from a user constructed diagram of the process. A conversational interface is used to interrogate the user with the aid of a database, to complete the topological information. An original modelling strategy implemented in DASPII provides a simple mechanism for parameter switching which creates a more flexible simulation environment. The problem description generated is by a further conversational procedure using a data-base. The model format used allows the same model equations to be used for dynamic and steady state solution. All the useful features of DASPI are retained in DASPII. The program has been demonstrated and verified using a number of example problems, Significant improvements using the new NLAE solver have been shown. Topics requiring further research are described. The benefits of variable switching in models has been demonstrated with a literature problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of the reliability of systems which learn from data is a key issue to investigate thoroughly before the actual application of information processing techniques to real-world problems. Over the recent years Gaussian processes and Bayesian neural networks have come to the fore and in this thesis their generalisation capabilities are analysed from theoretical and empirical perspectives. Upper and lower bounds on the learning curve of Gaussian processes are investigated in order to estimate the amount of data required to guarantee a certain level of generalisation performance. In this thesis we analyse the effects on the bounds and the learning curve induced by the smoothness of stochastic processes described by four different covariance functions. We also explain the early, linearly-decreasing behaviour of the curves and we investigate the asymptotic behaviour of the upper bounds. The effect of the noise and the characteristic lengthscale of the stochastic process on the tightness of the bounds are also discussed. The analysis is supported by several numerical simulations. The generalisation error of a Gaussian process is affected by the dimension of the input vector and may be decreased by input-variable reduction techniques. In conventional approaches to Gaussian process regression, the positive definite matrix estimating the distance between input points is often taken diagonal. In this thesis we show that a general distance matrix is able to estimate the effective dimensionality of the regression problem as well as to discover the linear transformation from the manifest variables to the hidden-feature space, with a significant reduction of the input dimension. Numerical simulations confirm the significant superiority of the general distance matrix with respect to the diagonal one.In the thesis we also present an empirical investigation of the generalisation errors of neural networks trained by two Bayesian algorithms, the Markov Chain Monte Carlo method and the evidence framework; the neural networks have been trained on the task of labelling segmented outdoor images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exploratory analysis of data seeks to find common patterns to gain insights into the structure and distribution of the data. In geochemistry it is a valuable means to gain insights into the complicated processes making up a petroleum system. Typically linear visualisation methods like principal components analysis, linked plots, or brushing are used. These methods can not directly be employed when dealing with missing data and they struggle to capture global non-linear structures in the data, however they can do so locally. This thesis discusses a complementary approach based on a non-linear probabilistic model. The generative topographic mapping (GTM) enables the visualisation of the effects of very many variables on a single plot, which is able to incorporate more structure than a two dimensional principal components plot. The model can deal with uncertainty, missing data and allows for the exploration of the non-linear structure in the data. In this thesis a novel approach to initialise the GTM with arbitrary projections is developed. This makes it possible to combine GTM with algorithms like Isomap and fit complex non-linear structure like the Swiss-roll. Another novel extension is the incorporation of prior knowledge about the structure of the covariance matrix. This extension greatly enhances the modelling capabilities of the algorithm resulting in better fit to the data and better imputation capabilities for missing data. Additionally an extensive benchmark study of the missing data imputation capabilities of GTM is performed. Further a novel approach, based on missing data, will be introduced to benchmark the fit of probabilistic visualisation algorithms on unlabelled data. Finally the work is complemented by evaluating the algorithms on real-life datasets from geochemical projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adopting a grounded theory methodology, the study describes how an event and pressure impact upon a process of deinstitutionalization and institutional change. Three case studies were theoretically sampled in relation to each other. They yielded mainly qualitative data from methods that included interviews, observations, participant observations, and document reviews. Each case consisted of a boundaried cluster of small enterprises that were not industry specific and were geographically dispersed. Overall findings describe how an event, i.e. a stimulus, causes disruption, which in turn may cause pressure. Pressure is then translated as a tension within the institutional environment, which is characterized by opposing forces that encourage institutional breakdown and institutional maintenance. Several contributions are made: Deinstitutionalization as a process is inextricable from the formation of institutions – both are needed to make sense of institutional change on a conceptual level but are also inseparable experientially in the field; stimuli are conceptually different to pressures; the historical basis of a stimulus may impact on whether pressure and institutional change occurs; pressure exists in a more dynamic capacity rather than only as a catalyst; institutional breakdown is a non-linear irregular process; ethical and survival pressures as new types were identified; institutional current, as an underpinning mechanism, influences how the tension between institutional breakdown and maintenance plays out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition P systems are computational models based on basic features of biological membranes and the observation of biochemical processes. In these models, membrane contains objects multisets, which evolve according to given evolution rules. In the field of Transition P systems implementation, it has been detected the necessity to determine whichever time are going to take active evolution rules application in membranes. In addition, to have time estimations of rules application makes possible to take important decisions related to the hardware / software architectures design. In this paper we propose a new evolution rules application algorithm oriented towards the implementation of Transition P systems. The developed algorithm is sequential and, it has a linear order complexity in the number of evolution rules. Moreover, it obtains the smaller execution times, compared with the preceding algorithms. Therefore the algorithm is very appropriate for the implementation of Transition P systems in sequential devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 60K05.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We build the Conditional Least Squares Estimator of 0 based on the observation of a single trajectory of {Zk,Ck}k, and give conditions ensuring its strong consistency. The particular case of general linear models according to 0=( 0, 0) and among them, regenerative processes, are studied more particularly. In this frame, we may also prove the consistency of the estimator of 0 although it belongs to an asymptotic negligible part of the model, and the asymptotic law of the estimator may also be calculated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60G18, 60E07

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 60F05