324 resultados para Legendre
Resumo:
This paper presents a simplified finite element (FE) methodology for solving accurately beam models with (Timoshenko) and without (Bernoulli-Euler) shear deformation. Special emphasis is made on showing how it is possible to obtain the exact solution on the nodes and a good accuracy inside the element. The proposed simplifying concept, denominated as the equivalent distributed load (EDL) of any order, is based on the use of Legendre orthogonal polynomials to approximate the original or acting load for computing the results between the nodes. The 1-span beam examples show that this is a promising procedure that allows the aim of using either one FE and an EDL of slightly higher order or by using an slightly larger number of FEs leaving the EDL in the lowest possible order assumed by definition to be equal to 4 independently of how irregular the beam is loaded.
Resumo:
Over the past few years, the common practice within air traffic management has been that commercial aircraft fly by following a set of predefined routes to reach their destination. Currently, aircraft operators are requesting more flexibility to fly according to their prefer- ences, in order to achieve their business objectives. Due to this reason, much research effort is being invested in developing different techniques which evaluate aircraft optimal trajectory and traffic synchronisation. Also, the inefficient use of the airspace using barometric altitude overall in the landing and takeoff phases or in Continuous Descent Approach (CDA) trajectories where currently it is necessary introduce the necessary reference setting (QNH or QFE). To solve this problem and to permit a better airspace management born the interest of this research. Where the main goals will be to evaluate the impact, weakness and strength of the use of geometrical altitude instead of the use of barometric altitude. Moreover, this dissertation propose the design a simplified trajectory simulator which is able to predict aircraft trajectories. The model is based on a three degrees of freedom aircraft point mass model that can adapt aircraft performance data from Base of Aircraft Data, and meteorological information. A feature of this trajectory simulator is to support the improvement of the strategic and pre-tactical trajectory planning in the future Air Traffic Management. To this end, the error of the tool (aircraft Trajectory Simulator) is measured by comparing its performance variables with actual flown trajectories obtained from Flight Data Recorder information. The trajectory simulator is validated by analysing the performance of different type of aircraft and considering different routes. A fuel consumption estimation error was identified and a correction is proposed for each type of aircraft model. In the future Air Traffic Management (ATM) system, the trajectory becomes the fundamental element of a new set of operating procedures collectively referred to as Trajectory-Based Operations (TBO). Thus, governmental institutions, academia, and industry have shown a renewed interest for the application of trajectory optimisation techniques in com- mercial aviation. The trajectory optimisation problem can be solved using optimal control methods. In this research we present and discuss the existing methods for solving optimal control problems focusing on direct collocation, which has received recent attention by the scientific community. In particular, two families of collocation methods are analysed, i.e., Hermite-Legendre-Gauss-Lobatto collocation and the pseudospectral collocation. They are first compared based on a benchmark case study: the minimum fuel trajectory problem with fixed arrival time. For the sake of scalability to more realistic problems, the different meth- ods are also tested based on a real Airbus 319 El Cairo-Madrid flight. Results show that pseudospectral collocation, which has shown to be numerically more accurate and computa- tionally much faster, is suitable for the type of problems arising in trajectory optimisation with application to ATM. Fast and accurate optimal trajectory can contribute properly to achieve the new challenges of the future ATM. As atmosphere uncertainties are one of the most important issues in the trajectory plan- ning, the final objective of this dissertation is to have a magnitude order of how different is the fuel consumption under different atmosphere condition. Is important to note that in the strategic phase planning the optimal trajectories are determined by meteorological predictions which differ from the moment of the flight. The optimal trajectories have shown savings of at least 500 [kg] in the majority of the atmosphere condition (different pressure, and temperature at Mean Sea Level, and different lapse rate temperature) with respect to the conventional procedure simulated at the same atmosphere condition.This results show that the implementation of optimal profiles are beneficial under the current Air traffic Management (ATM).
Resumo:
En este trabajo se introducen, en el contexto del Método de Elementos Finitos, dos alternativas posibles en relación con el concepto de acción repartida equivalente. La primera consiste en emplear pocos elementos, elevando el orden de dicha acción, mientras que la segunda se basa en emplear un mayor número de elementos dejando la acción en el orden más bajo posible. Se ilustran ambas situaciones mediante aplicaciones a los modelos de vigas de Timoshenko y Bernoulli-Euler, empleando estas acciones con diferentes órdenes, las cuales aproximan a la acción original, mediante polinomios ortogonales de Legendre en cada elemento. Como conclusión destacable, se indica que cuando se considera el menor número posible de elementos, es decir uno, para los casos de carga poco regular, ha bastado con utilizar acciones repartidas equivalentes de orden ligeramente superior al mínimo (orden cuatro), para obtener una excelente aproximación en los desplazamientos, giros y esfuerzos en el interior de los elementos.
Resumo:
La Fotogrametría, como ciencia y técnica de obtención de información tridimensional del espacio objeto a partir de imágenes bidimensionales, requiere de medidas de precisión y en ese contexto, la calibración geométrica de cámaras ocupa un lugar importante. El conocimiento de la geometría interna de la cámara es fundamental para lograr mayor precisión en las medidas realizadas. En Fotogrametría Aérea se utilizan cámaras métricas (fabricadas exclusivamente para aplicaciones cartográficas), que incluyen objetivos fotográficos con sistemas de lentes complejos y de alta calidad. Pero en Fotogrametría de Objeto Cercano se está trabajando cada vez con más asiduidad con cámaras no métricas, con ópticas de peor calidad que exigen una calibración geométrica antes o después de cada trabajo. El proceso de calibración encierra tres conceptos fundamentales: modelo de cámara, modelo de distorsión y método de calibración. El modelo de cámara es un modelo matemático que aproxima la transformación proyectiva original a la realidad física de las lentes. Ese modelo matemático incluye una serie de parámetros entre los que se encuentran los correspondientes al modelo de distorsión, que se encarga de corregir los errores sistemáticos de la imagen. Finalmente, el método de calibración propone el método de estimación de los parámetros del modelo matemático y la técnica de optimización a emplear. En esta Tesis se propone la utilización de un patrón de calibración bidimensional que se desplaza en la dirección del eje óptico de la cámara, ofreciendo así tridimensionalidad a la escena fotografiada. El patrón incluye un número elevado de marcas, lo que permite realizar ensayos con distintas configuraciones geométricas. Tomando el modelo de proyección perspectiva (o pinhole) como modelo de cámara, se realizan ensayos con tres modelos de distorsión diferentes, el clásico de distorsión radial y tangencial propuesto por D.C. Brown, una aproximación por polinomios de Legendre y una interpolación bicúbica. De la combinación de diferentes configuraciones geométricas y del modelo de distorsión más adecuado, se llega al establecimiento de una metodología de calibración óptima. Para ayudar a la elección se realiza un estudio de las precisiones obtenidas en los distintos ensayos y un control estereoscópico de un panel test construido al efecto. ABSTRACT Photogrammetry, as science and technique for obtaining three-dimensional information of the space object from two-dimensional images, requires measurements of precision and in that context, the geometric camera calibration occupies an important place. The knowledge of the internal geometry of the camera is fundamental to achieve greater precision in measurements made. Metric cameras (manufactured exclusively for cartographic applications), including photographic lenses with complex lenses and high quality systems are used in Aerial Photogrammetry. But in Close Range Photogrammetry is working increasingly more frequently with non-metric cameras, worst quality optical components which require a geometric calibration before or after each job. The calibration process contains three fundamental concepts: camera model, distortion model and method of calibration. The camera model is a mathematical model that approximates the original projective transformation to the physical reality of the lenses. The mathematical model includes a series of parameters which include the correspondents to the model of distortion, which is in charge of correcting the systematic errors of the image. Finally, the calibration method proposes the method of estimation of the parameters of the mathematical modeling and optimization technique to employ. This Thesis is proposing the use of a pattern of two dimensional calibration that moves in the direction of the optical axis of the camera, thus offering three-dimensionality to the photographed scene. The pattern includes a large number of marks, which allows testing with different geometric configurations. Taking the projection model perspective (or pinhole) as a model of camera, tests are performed with three different models of distortion, the classical of distortion radial and tangential proposed by D.C. Brown, an approximation by Legendre polynomials and bicubic interpolation. From the combination of different geometric configurations and the most suitable distortion model, brings the establishment of a methodology for optimal calibration. To help the election, a study of the information obtained in the various tests and a purpose built test panel stereoscopic control is performed.