947 resultados para Learning and teaching


Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXECUTIVE SUMMARYTeamwork skills are essential in the design industry where practitioners negotiate often-conflicting design options in multi-disciplinary teams. Indeed, many of the bodies that accredit design courses explicitly list teamwork skills as essential attributes of design graduates e.g., the Australian Institute of Architects (AIA), Royal Institute of British Architects (RIBA), the National Council of Architectural Registration Boards (NCARB) of the United States and the Institution of Engineers, Australia (IEAust). In addition to the need to meet the demands of the accrediting bodies, there are many reasons for the ubiquitous use of teamwork assignments in design schools. For instance, teamwork learning is seen as being representative of work in practice where design is nearly always a collaborative activity. Learning and teaching in teamwork contexts in design education are not without particular challenges. In particular, two broad issues have been identified: first, many students leave academia without having been taught the knowledge and skills of how to design in teams; second, teaching, assessment and assignment design need to be better informed by a clear understanding of what leads to effective teamwork and the learning of teamwork skills. In recognition of the lack of a structured approach to integrating teamwork learning into the curricula of design programs, this project set out to answer three primary research questions: • How do we teach teamwork skills in the context of design? • How do we assess teamwork skills?• How do design students best learn teamwork skills?In addition, four more specific questions were investigated:1. Is there a common range of learning objectives for group-and-team-work in architecture and related design disciplines that will enable the teaching of consistent and measurable outcomes?2. Do group and team formation methods, learning styles and team-role preferences impact students’ academic and course satisfaction outcomes?3. What combinations of group-and-team formation methods, teaching and assessment models significantly improve learning outcomes?4. For design students across different disciplines with different learning styles and cultural origins, are there significant differences in performance, student satisfaction (as measured through questionnaires and unit evaluations), group-and-team working abilities and student participation?To elucidate these questions, a design-based research methodology was followed comprising an iterative series of enquiries: (a) A literature review was completed to investigate: what constitutes effective teamwork, what contributes to effectiveness in teams, what leads to positive design outcomes for teams, and what leads to effective learning in teams. The review encompassed a range of contexts: from work-teams in corporate settings, to professional design teams, to education outside of and within the design disciplines. The review informed a theoretical framework for understanding what factors impact the effectiveness of student design teams. (b) The validity of this multi-factorial Framework of Effectiveness in Student Design Teams was tested via surveys of educators’ teaching practices and attitudes, and of students’ learning experiences. 638 students and 68 teachers completed surveys: two pilot surveys for participants at the four partner institutions, which then informed two national surveys completed by participants from the majority of design schools across Australia. (c) The data collected provided evidence for 22 teamwork factors impacting team effectiveness in student design teams. Pedagogic responses and strategies to these 22 teamwork factors were devised, tested and refined via case studies, focus groups and workshops. (d) In addition, 35 educators from a wide range of design schools and disciplines across Australia attended two National Teaching Symposiums. The first symposium investigated the wider conceptualisation of teamwork within the design disciplines, and the second focused on curriculum level approaches to structuring the teaching of teamwork skills identified in the Framework.The Framework of Effectiveness in Student Design Teams identifies 22 factors impacting effective teamwork, along with teaching responses and strategies that design educators might use to better support student learning. The teamwork factors and teaching strategies are categorised according to three groups of input (Task Characteristics, Individual Level Factors and Team Level Factors), two groups of processes (Teaching Practice & Support Structures and Team Processes), and three categories of output (Task Performance, Teamwork Skills, and Attitudinal Outcomes). Eight of the 22 teamwork factors directly relate to the skills that need to be developed in students, one factor relates to design outputs, and the other thirteen factors inform pedagogies that can be designed for better learning outcomes. In Table 10 of Section 4, we outline which of the 22 teamwork factors pertain to each of five stakeholder groups (curriculum leaders, teachers, students, employers and the professional bodies); thus establishing who will make best use the information and recommendations we make. In the body of this report we summarise the 22 teamwork factors and teaching strategies informed by the Framework of Effectiveness in Student Design Teams, and give succinct recommendations arising from them. This material is covered in depth by the project outputs. For instance, the teaching and assessment strategies will be expanded upon in a projected book on Teaching Teamwork in Design. The strategies are also elucidated by examples of good practice presented in our case studies, and by Manuals on Teamwork for Teachers and Students. Moreover, the project website (teaching-teamwork-in-design.com index.html=""> visited by representatives of stakeholder groups in Australia and Canada), is seeding a burgeoning community of practice that promises dissemination, critical evaluation and the subsequent refinement of our materials, tools, strategies and recommendations. The following three primary outputs have been produced by the project in answer to the primary research questions:1. A theoretical Framework of Effectiveness in Student Design Teams;2. Manuals on Teamwork for Teachers and Students (available from the website);3. Case studies of good/innovative practices in teaching and assessing teamwork in design;In addition, five secondary outputs/outcomes have been produced that provide more nuanced responses:4. Detailed recommendations for the professional accrediting bodies and curriculum leaders;5. Online survey data (from over 700 participants), plus Team Effectiveness Scale to determine the factors influencing effective learning and successful outputs for student design teams;6. A community of practice in policy, programs, practice and dialogue;7. A detailed book proposal (with sample chapter), submitted to prospective publishers, on Teaching Teamwork in Design; 8. An annotated bibliography (accessed via the project website) on learning, teaching and assessing teamwork.The project has already had an international impact. As well as papers presented in Canada and New Zealand, the surveys were participated in by six Canadian schools of architecture, whose teaching leaders also provided early feedback on the project aims and objectives during visits made to them by the project leader. In addition, design schools in Vancouver, Canada, and San Diego in the USA have already utilised the Teacher’s Manual, and in February 2014 the project findings were discussed at Tel Aviv University in a forum focusing on the challenges for sustainability in architectural education.teaching-teamwork-in-design.com>

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Contemporary approaches to clinical simulation can enhance educational outcomes. However, simulation approaches do have limitations with possible compromises for learning and teaching. This paper aims to identify barriers
and enablers to learning in simulated clinical settings.
Methods: A generic qualitative design was applied. Semi-structured group video debriefing interviews were held with Australian final-year nursing students who completed three patient deterioration scenarios with a standardized patient.
Audio-recorded interviews were transcribed and analysed to identify emergent themes.
Results: Interviews with 15 teams of three students (n = 45) from three universities were analysed. Learning enablers were ‘Realism of the simulated environment’; ‘Practicing: we should do this at uni’; ‘Learning from reflection and expert feedback’, and ‘How to become competent: know the gaps’. Barriers to learning included ‘Increased stress from inexperience; ‘Expectations when pretending’ and ‘Lack of assistance’. Skills practice in team-based settings with applicable reflection and debriefing was regarded as beneficial. Simulated patients enhanced fidelity but were unable to replicate actual clinical signs. High stress levels were perceived as a barrier to learning.
Conclusions: Applicably designed high fidelity simulations with video-based reflective review offer repeated rehearsal of clinical situations to enable learning. This educational strategy may reduce the time it takes undergraduate students to
reach competency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the students and staff perceptions of project/design-based learning in an engineering curriculum. Engineering at Deakin University has used project/design based learning as one of its engineering learning principles for further development in learning and teaching. It is required to improve the learning and teaching process as a holistic approach from the perspective of students’ and staff over the entire degree program. Engaging students are an important aspect of the project/design based learning model which it helps students to be self-directed active learners. A project/design based learning environment helps a curriculum to practice career related skills for students, such as practical learning, problem solving, collaborative teamwork, innovative creative designs, active learning, and engagement with real-world assignments. The focus of this paper is to analyse the impact of project/design-based learning in an engineering curriculum. From the quantitative and qualitative analysis performed, the results are analysed and presented from a students’ and staff perspective about project/design based learning within the curriculum. This paper is also concerned with enhancing staff and students engagement through project/design based learning. The feedback was sought from students on project/design-based learning. Additional feedback is also needed from staff members who teach and perform research in engineering design. The survey results shows more than 50% of students and 75% of staff views on project/design based learning proven that the impact of project/design based learning is helps to enhance of student and staff interaction in the School of Engineering at Deakin University.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper aims at showing how curricular complexity tends to be depleted by the use of digital platforms based on the SCORM (Sharable Content Object Reference Model) standard, which was created with the main purpose of recycling content as it is supposed to be independent both from the context of learning and the supporting technology also deemed to be neutral, all surrounded by a rhetoric of innovation and “pedagogical” innovation. The starting point of the discussion is García Perez’s model of Traditional Didactics as a simple tool to show almost graphically that any ancient didactic model is far richer in terms of complexity than the linearity, in disguise most of the times but still visible under a not so sophisticated critical lens, of the interaction human-(reusable) content that is the basis of the SCORM standard. The paper also addresses some of the more common deliberate mix-ups related to those digital platforms, such as learning and teaching, content and learning object, systems of automatic teaching and learning management systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wie lässt sich die Qualität des Lernens, Lehrens und Prüfens durch den Einsatz neuer Medien steigern? Übertragen auf die Komponenten und Bausteine des E-Education-Prozesses heißt das: - Mit welchen digitalen Materialien und Komponenten ist eine effiziente computergestützte Inhaltserschließung möglich? - Mit welcher Organisationsform der Lehre kann ein maximaler Qualitätsgewinn für die traditionelle Präsenzlehre erzielt werden? - Wie lassen sich traditionelle Prüfungsformen durch digitale Medien bereichern und mit technischer Hilfe auswerten? - Wie müssen digitale Inhalte beschaffen sein, um einen Mehrwert für den Lehr- und Lernprozess, möglicherweise in Selbstlernszenarien, zu erzielen? - Wie muss eine Lernplattformaufgebaut sein, um E-Education in ihrer gesamten Breite zu unterstützen und eine hohe Akzeptanz zu erreichen? Die Autoren sind Hauptakteure des Marburger „Linguistik Engineering Teams“, das in sich das gesamte Know-How für die Entwicklung und Nutzung verschiedener Lehr- und Lernszenarien vereinigt: von der Konzeption über die Programmierung bis hin zur Nutzung in allen denkbaren Varianten. Ihr Buch ist ein Leitfaden, der aufzeigt, wie mit einem komplexen E-Education-System nicht nur Qualitäts-, sondern auch Kapazitätsgewinne sowie erhebliche Aufwandsreduktionen erreicht werden können.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of new degrees adapted to the European Area of Higher Education (EAHE) has involved a radically different approach to the curriculum. The new programs are structured around competencies that should be acquired. Considering the competencies, teachers must define and develop learning objectives, design teaching methods and establish appropriate evaluation systems. While most Spanish universities have incorporated methodological innovations and evaluation systems different from traditional exams, there is enough confusion about how to teach and assess competencies and learning outcomes, as traditionally the teaching and assessment have focused on knowledge. In this paper we analyze the state-of-the-art in the mathematical courses of the new engineering degrees in some Spanish universities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the connections between scaffolding, second language learning and bilingual shared reading experiences. A socio- cultural theory of cognition underpins the investigation, which involved implementing a language and culture awareness program (LCAP) in a year 4 classroom and in the school community. Selected passages from observations are used to analyse the learning of three students, particularly in relation to languages other than English (LOTE). As these three case study students interacted in the classroom, at home and in the community, they co-constructed, appropriated and applied knowledge form one language to another. Through scaffolding, social spaces were constructed, where students learning and development were extended through a variety of activities that involved active participation, such as experimenting with language, asking questions and making suggestions. Extending these opportunities for student learning and development is considered in relation to creating teaching and learning environments that celebrate socio-cultural and linguistic diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports on a phenomenographic investigation into conceptions of learning for 15 Indigenous Australian university students over the three years of their degree courses. The ways in which they went about learning were also investigated along with the relationship between individual students' 'core' conceptions of learning and the ways in which they learned. Results indicated that their conceptions and ways of learning were similar in some respects to those found for other university students. However, some students went about learning in ways that were incongruent with the core conception of learning they held. This can be regarded as dissonance between strategies and conceptions of learning. The implications of this for teaching and learning for such students are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a critical overview into a distinctive typology of Learning and Teaching Research developed at a relatively small, research-led UK University. Based upon research into staff perceptions of the relationship between learning and teaching research and practice, the model represents an holistic approach to evidence-based learning and teaching practice in Contemporary Higher Education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This comparative study considers the main causative factors for change in recent years in the teaching of modern languages in England and France and seeks to contribute, in a general sense, to the understanding of change in comparable institutions. In England by 1975 the teaching of modern languages in the comprehensive schools was seen to be inappropriate to the needs of children of the whole ability-range. A combination of the external factor of the Council of Europe initiative in devising a needs-based learning approach for adult learners, and the internal factor of teacher-based initiatives in developing a graded-objectives learning approach for the less-able, has reversed this situation to some extent. The study examines and evaluates this reversal, and, in addition, assesses teachers' attitudes towards, and understanding of, the changes involved. In France the imposition of `la reforme Haby' in 1977 and the creation of `le college unique' were the main external factors for change. The subsequent failure of the reform and the socialist government's support of decentralisation policies returning the initiative for renewal to schools are examined and evaluated, as are the internal factors for changes in language-teaching - `groupes de niveau' and the creation of `equipes pedagogiques'. In both countries changes in the function of examinations at 15/16 plus are examined. The final chapter compared the changes in both education systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a global profession, engineering is integral to the maintenance and further development of society. Indeed, contemporary social problems requiring engineering solutions are not only a consequence of natural and ‘manmade’ disasters (such as the Japanese earthquake or the oil leakage in the Gulf of Mexico) but also encapsulate 21st Century dilemmas around sustainability, poverty and pollution [2,6,7]. Given the complexity of such problems and the constant need for innovation, the demand for engineering education to provide a ready supply of suitably qualified engineering graduates, able to make innovative decisions has never been higher [3,5]. Bearing this in mind, and taking account problems of attrition in engineering education [1,6,4] innovation in the way in which the curriculum is developed and delivered is crucial. CDIO [Conceive, Design, Implement, Operate] provides a potentially ground-breaking solution to such dilemmas. Aimed at equipping students with practical engineering skills supported by the necessary theoretical background, CDIO could potentially change the way engineering is perceived and experienced within higher education. Aston University introduced CDIO into its Mechanical Engineering and Design programmes in October 2011. From its induction, engineering education researchers have ‘shadowed’ the staff responsible for developing and teaching the programme. Utilising an Action Research Design, and adopting a mixed methodological research design, the researchers have worked closely with the teaching team to critically reflect on the processes involved in introducing CDIO into the curriculum. Concurrently, research has been conducted to capture students’ perspectives of CDIO. In evaluating the introduction of CDIO at Aston, the researchers have developed a distinctive research strategy with which to evaluate CDIO. It is the emergent findings from this research that form the basis of this paper. Although early-on in its development CDIO is making a significant difference to engineering education at the University. The paper draws attention to pedagogical, practical and professional issues – discussing each one in turn and in doing so critically analysing the value of CDIO from academic, student and industrial perspectives. The paper concludes by noting that whilst CDIO represents a forwardthinking approach to engineering education, the need for constant innovation in learning and teaching should not be forgotten. Indeed, engineering education needs to put itself at the forefront of pedagogic practice. Providing all-rounded engineers, ready to take on the challenges of the 21st Century!