930 resultados para Lattice theory - Computer simulation
Resumo:
The existence of a dispersion-managed soliton in two-dimensional nonlinear Schrodinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.
Resumo:
We perform a systematic numerical study, based on the time-dependent Gross-Pitaevskii equation, of jet formation in collapsing and exploding Bose-Einstein condensates as in the experiment by Donley et al (2001 Nature 412 295). In the actual experiment, via a Feshbach resonance, the scattering length of atomic interaction was suddenly changed from positive to negative on a pre-formed condensate. Consequently, the condensate collapsed and ejected atoms via explosion. On disruption of the collapse by suddenly changing the scattering length to zero, a radial jet of atoms was formed in the experiment. We present a satisfactory account of jet formation under the experimental conditions and also make predictions beyond experimental conditions which can be verified in future experiments.
Resumo:
This article describes a technique for Large Scale Virtual Environments (LSVEs) partitioning in hexagon cells and using portal in the cell interfaces to reduce the number of messages on the network and the complexity of the virtual world. These environments usually demand a high volume of data that must be sent only to those users who needs the information [Greenhalgh, Benford 1997].
Resumo:
The paper shows an alternative methodology to calculate transmission line parameters per unit length and to apply it in a three-phase line with a vertical symmetry plane. This procedure is derived from a general procedure where the modal transformation matrix of the line is required. In this paper, the unknown modal transformation matrix requested by general procedure is substituted by Clarke's matrix. With the substitution that is shown in the paper, the transmission line parameters can be obtained starting from impedances measured in one terminal of the line. First, the article shows the classical methodology to calculate frequency dependent transmission line parameters by using Carson and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, a new procedure is shown to calculate frequency dependent transmission line parameters directly from currents and voltages of an existing line. Then, this procedure is applied in a non-transposed three-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. The article shows simulation results for typical frequency spectra of switching transients (10 Hz to 10 kHz). Results have shown that procedure has © 2006 IEEE.
Resumo:
This paper explains why the reliability assessment of energy limited systems requires more detailed models for primary generating resources availability, internal and external generating dispatch and customer demand than the ones commonly used for large power systems and presents a methodology based on the full sequential Montecarlo simulation technique with AC power flow for their long term reliability assessment which can properly include these detailed models. By means of a real example, it is shown how the simplified modeling traditionally used for large power systems leads to pessimistic predictions if it is applied to an energy limited system and also that it cannot predict all the load point adequacy problems. © 2006 IEEE.
Resumo:
In this paper an efficient modal control strategy is described for the active vibration control of a truss structure. In this approach, a feedback force is applied to each mode to be controlled according to a weighting factor that is determined by assessing how much each mode is excited by the primary source. The strategy is effective provided that the primary source is at a fixed position on the structure, and that the source is stationary in the statistical sense. To test the effectiveness of the control strategy it is compared with an alternative, established approach namely, Independent Modal Space Control (IMSC). Numerical simulations show that with the new strategy it is possible to significantly reduce the control effort required, with a minimal reduction in control performance. © 2007 - IOS Press and the authors. All rights reserved.
Resumo:
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
Resumo:
The objective of this article is to apply the Design of experiments technique along with the Discrete Events Simulation technique in an automotive process. The benefits of the design of experiments in simulation include the possibility to improve the performance in the simulation process, avoiding trial and error to seek solutions. The methodology of the conjoint use of Design of Experiments and Computer Simulation is presented to assess the effects of the variables and its interactions involved in the process. In this paper, the efficacy of the use of process mapping and design of experiments on the phases of conception and analysis are confirmed. © 2007 IEEE.
Resumo:
In this paper, a mathematical model is derived via Lagrange's Equation for a shear building structure that acts as a foundation of a non-ideal direct current electric motor, controlled by a mass loose inside a circular carving. Non-ideal sources of vibrations of structures are those whose characteristics are coupled to the motion of the structure, not being a function of time only as in the ideal case. Thus, in this case, an additional equation of motion is written, related to the motor rotation, coupled to the equation describing the horizontal motion of the shear building. This kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure is reached, the better part of this energy is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. If additional increase steps in voltage are made, one may reach a situation where the rotor will jump to higher rotation regimes, no steady states being stable in between. As a device of passive control of both large amplitude vibrations and the Sommerfeld effect, a scheme is proposed using a point mass free to bounce back and forth inside a circular carving in the suspended mass of the structure. Numerical simulations of the model are also presented Copyright © 2007 by ASME.
Resumo:
The aim of this paper is to study the cropping system as complex one, applying methods from theory of dynamic systems and from the control theory to the mathematical modeling of the biological pest control. The complex system can be described by different mathematical models. Based on three models of the pest control, the various scenarios have been simulated in order to obtain the pest control strategy only through natural enemies' introduction. © 2008 World Scientific Publishing Company.
Resumo:
The objective of this article is to apply the Design of Experiments technique along with the Discrete Events Simulation technique in an automotive process. The benefits of the design of experiments in simulation include the possibility to improve the performance in the simulation process, avoiding trial and error to seek solutions. The methodology of the conjoint use of Design of Experiments and Computer Simulation is presented to assess the effects of the variables and its interactions involved in the process. In this paper, the efficacy of the use of process mapping and design of experiments on the phases of conception and analysis are confirmed.
Resumo:
This paper presents a comparative analysis between the experimental characterization and the numerical simulation results for a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Specifically, experimental optical characterization, by means of reflectance measurements under variable angles over the lattice plane family [1,1, 1], are compared to theoretical calculations based on the Finite Di®erence Time Domain (FDTD) method, in order to investigate the correlation between theoretical predictions and experimental data. The goal is to highlight the influence of crystal defects on the achieved performance.
Resumo:
The C 2 * radical is used as a system probe tool to the reactive flow diagnostic, and it was chosen due to its large occurrence in plasma and combustion in aeronautics and aerospace applications. The rotational temperatures of C 2 * species were determined by the comparison between experimental and theoretical data. The simulation code was developed by the authors, using C++ language and the object oriented paradigm, and it includes a set of new tools that increase the efficacy of the C 2 * probe to determine the rotational temperature of the system. A brute force approach for the determination of spectral parameters was adopted in this version of the computer code. The statistical parameter c 2 was used as an objective criterion to determine the better match of experimental and synthesized spectra. The results showed that the program works even with low-quality experimental data, typically collected from in situ airborne compact apparatus. The technique was applied to flames of a Bunsen burner, and the rotational temperature of ca. 2100 K was calculated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper considers the importance of using a top-down methodology and suitable CAD tools in the development of electronic circuits. The paper presents an evaluation of the methodology used in a computational tool created to support the synthesis of digital to analog converter models by translating between different tools used in a wide variety of applications. This tool is named MS 2SV and works directly with the following two commercial tools: MATLAB/Simulink and SystemVision. Model translation of an electronic circuit is achieved by translating a mixed-signal block diagram developed in Simulink into a lower level of abstraction in VHDL-AMS and the simulation project support structure in SystemVision. The method validation was performed by analyzing the power spectral of the signal obtained by the discrete Fourier transform of a digital to analog converter simulation model. © 2011 IEEE.