918 resultados para Laser scanning confocal microscope
Resumo:
We report the encapsulation of optical brightening agent (OBA) into hollow microcapsules prepared by the controlled Layer- by-Layer (LbL) self-assembly process, achieved by the sequential adsorption of oppositely charged polyelectrolytes using negatively charged silica template. Loading takes place by spontaneous deposition method which was proved by confocal laser scanning microscopy (CLSM) using rhodamine 6G (Rd6G) as a fluorescent probe. The loading of the OBA into the microcapsules was found to be dependent on the feeding concentration, pH of the medium, and loading temperature. The encapsulation efficiency of OBA decreased on increasing feeding concentration. Maximum loading was observed at pH 4 and amount of OBA loaded decreased with increase in pH. The loaded OBA was released in a sustained manner for 8 h. No degradation of the OBA was observed during the process of encapsulation and release. Polyelectrolyte capsules potentially offer an innovative way of encapsulating large amounts of active materials for a variety of applications. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 127: 1609-1614, 2013
Resumo:
The industrial production and commercial applications of titanium dioxide nanoparticles have increased considerably in recent times, which has increased the probability of environmental contamination with these agents and their adverse effects on living systems. This study was designed to assess the genotoxicity potential of TiO2 NPs at high exposure concentrations, its bio-uptake, and the oxidative stress it generated, a recognised cause of genotoxicity. Allium cepa root tips were treated with TiO2 NP dispersions at four different concentrations (12.5, 25, 50, 100 mu g/mL). A dose dependant decrease in the mitotic index (69 to 21) and an increase in the number of distinctive chromosomal aberrations were observed. Optical, fluorescence and confocal laser scanning microscopy revealed chromosomal aberrations, including chromosomal breaks and sticky, multipolar, and laggard chromosomes, and micronucleus formation. The chromosomal aberrations and DNA damage were also validated by the comet assay. The bio-uptake of TiO2 in particulate form was the key cause of reactive oxygen species generation, which in turn was probably the cause of the DNA aberrations and genotoxicity observed in this study.
B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy
Resumo:
An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy). A comparative study of the proposed technique with the state-of-art maximum likelihood (ML) and maximum-a-posteriori (MAP) with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED. (C) 2015 Author(s).
Resumo:
In this paper, eutectic MC carbide growth morphology and its evolution with laser scanning speed were studied comprehensively of a laser clad MC carbide reinforced FeAl intermetallic matrix composite coating. As the laser scanning speed increased, the growth morphology of eutectic MC carbide was found to be needle-aligned annulation, butterfly-like and well-developed dendrite.
Resumo:
The molecular ordering of coronene (C24H12) obtained by vacuum-deposition onto predominantly Ag(111) on mica has been investigated using the scanning tunnelling microscope. Real-space topographic images reveal that in certain regions we obtain layer-by-layer ordered growth of the molecules on this substrate which agrees with previous indirect measurements (the growth did not display this ordering in other regions). In our experiments on the ordered regions, we observe the best imaging contrast at a voltage bias of -0.28 V which may correspond to a resonant tunnelling process through the molecules. © 1995.
Resumo:
The coherent anti-Stokes Raman scattering (CARS) microscope with the combination of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labelling. CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscope. In this paper, the intensity distribution and the polarization property of the optical field near the focus was calculated. By using the Green function, the precise analytic solution to the wave equation of a Hertzian dipole source was obtained. We found that the intensity distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscope (e.g. the point spread function) will fail to describe the imaging properties of the CARS microscope.
Resumo:
用扫描电镜(SEM)研究了氟化镁在800nm超短脉冲激光作用下的单枪表面烧蚀形貌.根据烧蚀斑面积与激光脉冲能量间的对数关系,测得烧蚀阈值与激光脉宽的关系曲线(55—750fs).计算了导带电子的双光子吸收,改进了多速率方程模型.很好地解释了实验结果.
Resumo:
We report micromodification of Eu element distribution in a silicate glass with femtosecond laser irradiation. Elemental analysis shows that the content of Eu decreased at the focal point and increased in a ring-shaped region around the focal point, which indicates migration of Eu ions has been induced by the femtosecond laser irradiation. Confocal fluorescence spectra demonstrate that the fluorescence intensity of Eu3+ ions increased by 20% in the laser-induced, Eu-enriched, ring-shaped region compared with that for nonirradiated glass. The mechanism for the laser induced change in fluorescence properties of Eu3+ has been investigated. (C) 2009 Optical Society of America
Resumo:
We demonstrate the coherent linking of periodic nano-ripples formed on the surface of ZnO crystals induced by femtosecond laser pulses. By adjusting the distance between two laser scanning zones, the periodic nano-ripples induced by two separated laser writing processes can be coherently linked and the ZnO nanograting with much longer grooves is therefore produced. The length limitation of this kind of nanograting previously set by the laser focus size is thus overcome. The micro-Raman mapping technique is used to evaluate the quality of coherent linking, and the underlying physics is discussed. The demonstrated scheme is promising for producing large-size self-organized nanogratings induced by femtosecond laser pulses.
Resumo:
利用具有纳焦能量、高重复频率的偏振光飞秒双脉冲对金属铬膜样品进行微加工,样品表面都会产生微突起状结构,它们的宽度在0~400 ps的双脉冲时延范围内没有明显的变化,但高度却都在1~10 ps的双脉冲时延范围内呈现明显的下降,在此时延范围之外并没有明显的变化。通过加工样品的扫描电子显微镜(SEM)图片发现,对于偏振光,利用双脉冲方法,可以获得更好的加工质量。并且线偏振光得到的微突起状结构比较细长,在入射光束的偏振方向上有所伸长;圆偏振光得到的微突起状结构比较接近圆形。即在低脉冲能量、高重复频率情况下,具体的微加工特征形貌与入射光束的偏振状态有关。
Resumo:
With light illumination from an Ar ion laser, the photoinduced changes in vacuum evaporated amorphous GeSe2 films; were investigated with the X-ray diffraction (XRD), infrared absorption (IR), scanning electron microscope (SEM), transmitting electron microscope (TEM) and transmittance spectra analysis. It was observed that the optical transmittance edges of films shifted to shorter wavelength according to annealing and light illumination and the shift in well-annealed films could be recovered by annealing at 200 degrees C for 1 h in Ar air. The magnitude of shift increased with the increase of the intensity of illumination light and the illumination time. By sides, photoinduced crystallization was also observed in the exposed regions of GeSe2 films and more of it was observed with stronger intensity of illumination light.
Resumo:
利用质子激发X射线荧光(PIXE)、X射线衍射(XRD)、扫描电子显微镜(SEM)以及激光拉曼光谱(LRS)技术对几个来自中国新疆、俄罗斯、加拿大和新西兰等地的软玉样品的进行了岩石矿物学特征分析,从成分组成和微观织构方面比较了各地软玉的不同特征.实验结果显示了软玉作为透闪石质玉石,随着Fe2O3含量的增加,逐步向阳起石过渡.中国和田玉以其特有的毛毡状纤维交织结构,形成了均匀细腻、油脂光泽的表面特征.无破损成分分析方法为研究贵重的古玉样品提供了技术支持.
Resumo:
河南南阳独山玉的开采历史可以追溯到新石器时代,在我国玉文化中占有重要地位。鉴于当前对独山玉进行无损鉴别的方法较少,利用质子激发X荧光技术(proton induced X-ray emission,PIXE)、X射线衍射(X-ray diffraction,XRD)、激光Raman光谱(laser Raman spectroscopy,LRS)和扫描电子显微镜(scanning electron microscope,SEM)等技术对河南南阳独山玉料进行岩石矿物学分析。结果表明:独山玉主要由钙长石矿物构成,晶粒细小且结合紧密的显微结构与独山玉具有极高的稳定性有较大关系。PIXE,XRD和Raman技术作为无损分析方法为鉴定独山玉提供了准确有效的方法,为研究贵重的古玉样品提供了技术支持。
Resumo:
用扫描电镜(SEM)观察了化学沉积Ni-P合金薄膜/单晶硅基体的结构与颗粒度,利用X射线衍射(XRD)技术测试了其化学沉积后的残余应力,测量了激光热处理后残余应力的变化规律,分析了残余应力对磨损性能及界面结合强度的影响。实验结果表明,化学沉积Ni-P合金薄膜/硅基体的残余应力均表现为拉应力,经过激光热处理后残余应力发生了变化,由高值的拉应力变为低值的拉应力或压应力;薄膜残余应力对其磨损性能有明显的影响,其磨损量随着残余应力的减小而减小;薄膜与基体结合强度随着残余应力的增大而减小,合理地选择激光热处理参数可
Resumo:
在室温下用聚焦的飞秒激光照射高折射率、低双折射的透明含芴结构树脂-对苯二甲酸乙二醇酯(PET)共聚物,探索飞秒激光制备高分子光学功能微结构的可能性。通过紫外-可见吸收光谱、红外光谱、电子自旋共振谱、光学显微镜、扫描电镜及透射电镜等分析手段,对该材料在飞秒激光照射后的结构变化及机理进行研究。结果发现:含芴结构树脂共聚物在飞秒激光照射后产生化学键断裂,生成未成对电子,并形成无定形碳;照射区在可见光区域的吸收增强;随激光能量密度的减少在激光会聚点附近诱导结构由慧尾状向单一细丝转变。演示了三维着色内雕。