650 resultados para Laplace, Transformadas de
Resumo:
A topological analysis of intracule and extracule densities and their Laplacians computed within the Hartree-Fock approximation is presented. The analysis of the density distributions reveals that among all possible electron-electron interactions in atoms and between atoms in molecules only very few are located rigorously as local maxima. In contrast, they are clearly identified as local minima in the topology of Laplacian maps. The conceptually different interpretation of intracule and extracule maps is also discussed in detail. An application example to the C2H2, C2H4, and C2H6 series of molecules is presented
Resumo:
La presente tesis aborda el proceso comunicativo en la red social de amigos hi5, desde un enfoque sociocultural. Su contenido propone una ruptura con los enfoques tradicionales y comprende a la comunicación como una construcción de sentido(s), a fin de explorar un tipo de comunicación específica, la de tipo virtual. Esto, conlleva la descripción de ciertas formas de interacción y relacionalidad social en el mundo moderno, las cuales están siendo transformadas desde la conformación de comunidades virtuales, a partir de contacto digital y uso de las Nuevas Tecnologías de la Información y la Comunicación (NTIC). La investigación se realiza en el año 2011, con un grupo femenino de jóvenes de cuarto curso del Colegio Nacional Experimental María Angélica Idrobo del Distrito Metropolitano de Quito. Se describe el proceso de interrelación presencial en dicha institución; para, seguidamente, observar la entrada, el accionar y, las razones y motivaciones que las llevan a sumarse y luego abandonar la red social hi5. Con ello, el presente estudio se enmarca en el análisis de la comunicación desde el proceso de movilidad interactiva que pasa por una red social virtual de amigos.
Resumo:
El pueblo Kamëntsá del valle de Sibundoy (Suroccidente de Colombia) ha enfrentado distintas formas de sometimiento anclados a la conquista, colonización y colonialidad dentro de su territorio. Entre otros factores la presencia de la evangelización como fórmula de progreso, soberanía, civilización a principios del siglo XX influyó para que de manera incisiva sus prácticas culturales se vieran transformadas. Esta investigación se fundamenta en la lectura de un legado visual constituido por una serie de fotografías que hacen parte del archivo de la Diócesis Mocoa Sibundoy ADMS y en las cuales la presencia los indígenas es visible; tomando como base la metodología propuesta por Javier Marzal y las lecturas de un conjunto de observadores que hacen parte de la comunidad en mención. La fotografía en este caso es asumida como práctica cultural y social que visibiliza una serie de construcciones sobre la etnia, la clase, el género y el territorio.
Resumo:
The too diverse representation of ENSO in a coupled GCM limits one’s ability to describe future change of its properties. Several studies pointed to the key role of atmosphere feedbacks in contributing to this diversity. These feedbacks are analyzed here in two simulations of a coupled GCM that differ only by the parameterization of deep atmospheric convection and the associated clouds. Using the Kerry–Emanuel (KE) scheme in the L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4; KE simulation), ENSO has about the right amplitude, whereas it is almost suppressed when using the Tiedke (TI) scheme. Quantifying both the dynamical Bjerknes feedback and the heat flux feedback in KE, TI, and the corresponding Atmospheric Model Intercomparison Project (AMIP) atmosphere-only simulations, it is shown that the suppression of ENSO in TI is due to a doubling of the damping via heat flux feedback. Because the Bjerknes positive feedback is weak in both simulations, the KE simulation exhibits the right ENSO amplitude owing to an error compensation between a too weak heat flux feedback and a too weak Bjerknes feedback. In TI, the heat flux feedback strength is closer to estimates from observations and reanalysis, leading to ENSO suppression. The shortwave heat flux and, to a lesser extent, the latent heat flux feedbacks are the dominant contributors to the change between TI and KE. The shortwave heat flux feedback differences are traced back to a modified distribution of the large-scale regimes of deep convection (negative feedback) and subsidence (positive feedback) in the east Pacific. These are further associated with the model systematic errors. It is argued that a systematic and detailed evaluation of atmosphere feedbacks during ENSO is a necessary step to fully understand its simulation in coupled GCMs.
Resumo:
This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean–atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean–atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Niño-Southern oscillation) consequently increases, as the damping processes are left unchanged.
Resumo:
We consider the classical coupled, combined-field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle. In recent work, we have proved lower and upper bounds on the $L^2$ condition numbers for these formulations, and also on the norms of the classical acoustic single- and double-layer potential operators. These bounds to some extent make explicit the dependence of condition numbers on the wave number $k$, the geometry of the scatterer, and the coupling parameter. For example, with the usual choice of coupling parameter they show that, while the condition number grows like $k^{1/3}$ as $k\to\infty$, when the scatterer is a circle or sphere, it can grow as fast as $k^{7/5}$ for a class of `trapping' obstacles. In this paper we prove further bounds, sharpening and extending our previous results. In particular we show that there exist trapping obstacles for which the condition numbers grow as fast as $\exp(\gamma k)$, for some $\gamma>0$, as $k\to\infty$ through some sequence. This result depends on exponential localisation bounds on Laplace eigenfunctions in an ellipse that we prove in the appendix. We also clarify the correct choice of coupling parameter in 2D for low $k$. In the second part of the paper we focus on the boundary element discretisation of these operators. We discuss the extent to which the bounds on the continuous operators are also satisfied by their discrete counterparts and, via numerical experiments, we provide supporting evidence for some of the theoretical results, both quantitative and asymptotic, indicating further which of the upper and lower bounds may be sharper.
Resumo:
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional “climate modeling” source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
Resumo:
New representations and efficient calculation methods are derived for the problem of propagation from an infinite regularly spaced array of coherent line sources above a homogeneous impedance plane, and for the Green's function for sound propagation in the canyon formed by two infinitely high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral. A pole subtraction technique is used to remove poles in the integrand which lie near the path of integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific numerical integration method is proposed. Numerical experiments show highly accurate results across the frequency spectrum for a range of ground surface types. It is expected that the methods proposed will prove useful in boundary element modeling of noise propagation in canyon streets and in ducts, and for problems of scattering by periodic surfaces.
Resumo:
This paper is concerned with the problem of propagation from a monofrequency coherent line source above a plane of homogeneous surface impedance. The solution of this problem occurs in the kernel of certain boundary integral equation formulations of acoustic propagation above an impedance boundary, and the discussion of the paper is motivated by this application. The paper starts by deriving representations, as Laplace-type integrals, of the solution and its first partial derivatives. The evaluation of these integral representations by Gauss-Laguerre quadrature is discussed, and theoretical bounds on the truncation error are obtained. Specific approximations are proposed which are shown to be accurate except in the very near field, for all angles of incidence and a wide range of values of surface impedance. The paper finishes with derivations of partial results and analogous Laplace-type integral representations for the case of a point source.
Resumo:
We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a delta-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on delta. We apply the obtained estimates to show exponential convergence with rate O(exp(−b square root N)), N being the number of degrees of freedom and b>0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(−b cubic root N )), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.
Resumo:
We study spectral properties of the Laplace-Beltrami operator on two relevant almost-Riemannian manifolds, namely the Grushin structures on the cylinder and on the sphere. This operator contains first order diverging terms caused by the divergence of the volume. We get explicit descriptions of the spectrum and the eigenfunctions. In particular in both cases we get a Weyl's law with leading term Elog E. We then study the drastic effect of Aharonov-Bohm magnetic potentials on the spectral properties. Other generalised Riemannian structures including conic and anti-conic type manifolds are also studied. In this case, the Aharonov-Bohm magnetic potential may affect the self-adjointness of the Laplace-Beltrami operator.
Resumo:
We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface, by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semi-analytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a shallow flat bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.
Resumo:
We perform a statistical study of the process of orbital determination of the HD82943 extrasolar planetary system, using the current observational data set of N = 165 radial velocity (RV) measurements. Our aim is to analyse the dispersion of possible orbital fits leading to residuals compatible with the best solution, and to discuss the sensitivity of the results with respect to both the data set and the error distribution around the best fit. Although some orbital parameters (e.g. semimajor axis) appear well constrained, we show that the best fits for the HD82943 system are not robust, and at present it is not possible to estimate reliable solutions for these bodies. Finally, we discuss the possibility of a third planet, with a mass of 0.35M(Jup) and an orbital period of 900 d. Stability analysis and simulations of planetary migration indicate that such a hypothetical three-planet system could be locked in a double 2/1 mean-motion resonance, similar to the so-called Laplace resonance of the three inner Galilean satellites of Jupiter.
Resumo:
Using a combination of several methods, such as variational methods. the sub and supersolutions method, comparison principles and a priori estimates. we study existence, multiplicity, and the behavior with respect to lambda of positive solutions of p-Laplace equations of the form -Delta(p)u = lambda h(x, u), where the nonlinear term has p-superlinear growth at infinity, is nonnegative, and satisfies h(x, a(x)) = 0 for a suitable positive function a. In order to manage the asymptotic behavior of the solutions we extend a result due to Redheffer and we establish a new Liouville-type theorem for the p-Laplacian operator, where the nonlinearity involved is superlinear, nonnegative, and has positive zeros. (C) 2009 Elsevier Inc. All rights reserved.