596 resultados para Lagrange multipliers
Resumo:
Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the
European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are
characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly
highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted
that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated
since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being
widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns
made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider
rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the
evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach
such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical
approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the
approach proposed by Spanos (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion
equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a
real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made
about the overturning conditions and on the effect of forcing function’s frequency.
.
Resumo:
Estudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Desenvolvemos também alguns métodos directos que permitem resolver determinadas classes de problemas variacionais através de desigualdades em escalas temporais. No último capítulo apresentamos operadores de diferença fraccionários e propomos um novo cálculo das variações fraccionário em tempo discreto. Obtemos as correspondentes condições necessárias de Euler– Lagrange e Legendre, ilustrando depois a teoria com alguns exemplos.
Resumo:
Nesta tese são estudados espaços de Besov de suavidade generalizada em espaços euclidianos, numa classe de fractais designados conjuntos-h e em estruturas abstractas designadas por espaços-h. Foram obtidas caracterizações e propriedades para estes espaços de funções. Em particular, no caso de espaços de Besov em espaços euclidianos, foram obtidas caracterizações por diferenças e por decomposições em átomos não suaves, foi provada uma propriedade de homogeneidade e foram estudados multiplicadores pontuais. Para espaços de Besov em conjuntos-h foi obtida uma caracterização por decomposições em átomos não suaves e foi construído um operador extensão. Com o recurso a cartas, os resultados obtidos para estes espaços de funções em fractais foram aplicados para definir e trabalhar com espaços de Besov de suavidade generalizada em estruturas abstractas. Nesta tese foi também estudado o laplaciano fractal, considerado a actuar em espaços de Besov de suavidade generalizada em domínios que contêm um conjunto-h fractal. Foram obtidos resultados no contexto de teoria espectral para este operador e foi estudado, à custa deste operador, um problema de Dirichlet fractal no contexto de conjuntos-h.
Resumo:
Introduzimos um cálculo das variações fraccional nas escalas temporais ℤ e (hℤ)!. Estabelecemos a primeira e a segunda condição necessária de optimalidade. São dados alguns exemplos numéricos que ilustram o uso quer da nova condição de Euler–Lagrange quer da nova condição do tipo de Legendre. Introduzimos também novas definições de derivada fraccional e de integral fraccional numa escala temporal com recurso à transformada inversa generalizada de Laplace.
Resumo:
Generalizamos o cálculo Hahn variacional para problemas do cálculo das variações que envolvem derivadas de ordem superior. Estudamos o cálculo quântico simétrico, nomeadamente o cálculo quântico alpha,beta-simétrico, q-simétrico e Hahn-simétrico. Introduzimos o cálculo quântico simétrico variacional e deduzimos equações do tipo Euler-Lagrange para o cálculo q-simétrico e Hahn simétrico. Definimos a derivada simétrica em escalas temporais e deduzimos algumas das suas propriedades. Finalmente, introduzimos e estudamos o integral diamond que generaliza o integral diamond-alpha das escalas temporais.
Resumo:
Nesta tese de doutoramento apresentamos um cálculo das variações fraccional generalizado. Consideramos problemas variacionais com derivadas e integrais fraccionais generalizados e estudamo-los usando métodos directos e indirectos. Em particular, obtemos condições necessárias de optimalidade de Euler-Lagrange para o problema fundamental e isoperimétrico, condições de transversalidade e teoremas de Noether. Demonstramos a existência de soluções, num espaço de funções apropriado, sob condições do tipo de Tonelli. Terminamos mostrando a existência de valores próprios, e correspondentes funções próprias ortogonais, para problemas de Sturm- Liouville.
Resumo:
We consider some problems of the calculus of variations on time scales. On the beginning our attention is paid on two inverse extremal problems on arbitrary time scales. Firstly, using the Euler-Lagrange equation and the strengthened Legendre condition, we derive a general form for a variation functional that attains a local minimum at a given point of the vector space. Furthermore, we prove a necessary condition for a dynamic integro-differential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus are obtained as particular cases. Afterwards, we prove Euler-Lagrange type equations and transversality conditions for generalized infinite horizon problems. Next we investigate the composition of a certain scalar function with delta and nabla integrals of a vector valued field. Euler-Lagrange equations in integral form, transversality conditions, and necessary optimality conditions for isoperimetric problems, on an arbitrary time scale, are proved. In the end, two main issues of application of time scales in economic, with interesting results, are presented. In the former case we consider a firm that wants to program its production and investment policies to reach a given production rate and to maximize its future market competitiveness. The model which describes firm activities is studied in two different ways: using classical discretizations; and applying discrete versions of our result on time scales. In the end we compare the cost functional values obtained from those two approaches. The latter problem is more complex and relates to rate of inflation, p, and rate of unemployment, u, which inflict a social loss. Using known relations between p, u, and the expected rate of inflation π, we rewrite the social loss function as a function of π. We present this model in the time scale framework and find an optimal path π that minimizes the total social loss over a given time interval.
Resumo:
Esta dissertação descreve o processo de integração dos matemáticos portugueses na comunidade matemática internacional no final do século XIX e início do século XX, focando-se na vida e obra do matemático Francisco Gomes Teixeira (1851-1933). Tenciona a ser mais um contributo para o reconhecimento nacional e internacional do matemático Gomes Teixeira analisando a sua obra como matemático e organizador científico em Portugal através de fontes, parcialmente ainda não conhecidas. Para esse efeito analisou-se a evolução histórica que ocorreu no mundo científico daquela época, em particular a formação da comunidade matemática através de iniciativas individuais ou coletivas, muitas vezes acompanhadas pela fundação de revistas e elaboração de manuais que contribuíram para a internacionalização e, de certa forma, para uma estandardização do estudo universitário básico. Em particular foi estudada a situação em Portugal, onde o papel de liderança foi assumido por Gomes Teixeira. Mostra-se como Gomes Teixeira, graças ao seu trabalho, ao seu talento como matemático e à sua atividade como organizador académico, conseguiu reduzir significativamente o isolamento científico de Portugal na área da matemática. Estudou-se em extensão a fundação de revistas científicas em diferentes países, acompanhando a sua evolução desde de revistas nacionais até revistas internacionais. Focando-nos no Jornal de Sciencias Matemáticas e Astronómicas, fundado em 1877 por Gomes Teixeira (mais tarde conhecido internacionalmente como Teixeira’s Journal), acompanhamos detalhadamente a sua transformação de uma revista nacional numa revista internacional, sendo esta transformação comum naquela época à maioria de revistas científicas importantes de outros países como, por exemplo, no caso do Jornal de Crelle, do Jornal de Liouville, ou outros. Estudou-se igualmente o reconhecimento a nível internacional, através de referências estrangeiras, da abordagem original de Gomes Teixeira à Análise Infinitesimal patente nos seus manuais. O interesse de Gomes Teixeira pela teoria das funções analíticas e pelos seus diferentes desenvolvimentos em série manifestou-se no grande número de artigos publicados sobre este tema e encontrou reconhecimento justo pela designação de um teorema que completa resultados de Lagrange e de Laurent como Teorema de Teixeira. Na sua análise do mérito científico de Gomes Teixeira esta dissertação restringiu-se conscientemente nesta área da Análise Matemática, uma vez que um estudo abrangente de toda a obra ultrapassasse o nosso objetivo. Foi também discutido o intenso intercâmbio científico levado a cabo por Gomes Teixeira através de correspondência e troca de publicações ou permuta de revistas com os matemáticos de diferentes países. Esta análise permitiu verificar um aumento da popularidade dos matemáticos portugueses através do incremento do número de artigos publicados no estrangeiro durante quase 30 anos. Uma fonte imprescindível nesta análise foi o Jahrbuch über die Fortschritte der Mathematik, cujas referências (em geral na língua alemã e por isso até agora quase nunca usadas na literatura Portuguesa) documentaram as publicações em quase todas as revistas matemáticas durante os anos da sua existência entre 1868 e 1942. Descreve-se a colaboração de Gomes Teixeira com diferentes organizações internacionais e documenta-se o apreço internacional por parte do mundo académico. Novos documentos traçam o processo de eleição como membro da Academia das Ciências Alemã Leopoldina, sob proposta de Georg Cantor e outros matemáticos alemães. Finalmente, incluí-se uma breve descrição das atividades levadas a cabo na Rússia, em Espanha e na Grécia em prol do processo de internacionalização da comunidade matemática europeia tendo em vista uma melhor contextualização do contributo de Gomes Teixeira para a integração de Portugal neste processo.
Resumo:
Cherenkov Imaging counters require large photosensitive areas, capable of single photon detection, operating at stable high gains under radioactive backgrounds while standing high rates, providing a fast response and a good time resolution, and being insensitive to magnetic fields. The development of photon detectors based in Micro Pattern Gaseous detectors (MPGDs), represent a new generation of gaseous photon detectors. In particular, gaseous detectors based on stacked Thick-Gaseous Electron Multipliers (THGEMs), or THGEM based structures, coupled to a CsI photoconverter coating, seem to fulfil the requirements imposed by Cherenkov imaging counters. This work focus on the study of the THGEM-based detectors response as function of its geometrical parameters and applied voltages and electric fields, aiming a future upgrade of the Cherenkov Imaging counter RICH-1 of the COMPASS experiment at CERN SPS. Further studies to decrease the fraction of ions that reach the photocathode (Ion Back Flow – IBF) to minimize the ageing and maximize the photoelectron extraction are performed. Experimental studies are complemented with simulation results, also perfomed in this work.
Resumo:
Dissertação de Mestrado, Economia do Turismo e Desenvolvimento Regional, Faculdade de Economia, Universidade do Algarve, 2015
Resumo:
In this paper digital part of a self-calibrating quadrature-receiver is described, containing a digital calibration-engine. The blind source-separation-based calibration-engine eliminates the RF-impairments in real-time hence improving the receiver's performance without the need for test/pilot tones, trimming or use of power-hungry discrete components. Furthermore, an efficient time-multiplexed calibration-engine architecture is proposed and implemented on an FPGA utilising a reduced-range multiplier structure. The use of reduced-range multipliers results in substantial reduction of area as well as power consumption without a compromise in performance when compared with an efficiently designed general purpose multiplier. The performance of the calibration-engine does not depend on the modulation format or the constellation size of the received signal; hence it can be easily integrated into the digital signal processing paths of any receiver.
Resumo:
This paper deals with and details the design of a power-aware adaptive digital image rejection receiver based on blind-source-separation that alleviates the RF analog front-end impairments. Power-aware system design at the RTL level without having to redesign arithmetic circuits is used to reduce the power consumption in nomadic devices. Power-aware multipliers with configurable precision are used to trade-off the image-rejection-ratio (IRR) performance with power consumption. Results of the simulation case studies demonstrate that the IRR performance of the power-aware system is comparable to that of the normal implementation albeit degraded slightly, but well within the acceptable limits.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.
Resumo:
The purpose of the project is to measure the impact of fiscal policy on the Portuguese GDP and how it may vary according to the state of the financial market. A Threshold VAR model is presented in which the two regimes are found using a financial stress index that divides the economy into a situation of financial stress and financial stability.