1000 resultados para LIN28B GENE
Resumo:
Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.
Resumo:
PURPOSE/OBJECTIVES: To identify latent classes of individuals with distinct quality-of-life (QOL) trajectories, to evaluate for differences in demographic characteristics between the latent classes, and to evaluate for variations in pro- and anti-inflammatory cytokine genes between the latent classes. DESIGN: Descriptive, longitudinal study. SETTING: Two radiation therapy departments located in a comprehensive cancer center and a community-based oncology program in northern California. SAMPLE: 168 outpatients with prostate, breast, brain, or lung cancer and 85 of their family caregivers (FCs). METHODS: Growth mixture modeling (GMM) was employed to identify latent classes of individuals based on QOL scores measured prior to, during, and for four months following completion of radiation therapy. Single nucleotide polymorphisms (SNPs) and haplotypes in 16 candidate cytokine genes were tested between the latent classes. Logistic regression was used to evaluate the relationships among genotypic and phenotypic characteristics and QOL GMM group membership. MAIN RESEARCH VARIABLES: QOL latent class membership and variations in cytokine genes. FINDINGS: Two latent QOL classes were found: higher and lower. Patients and FCs who were younger, identified with an ethnic minority group, had poorer functional status, or had children living at home were more likely to belong to the lower QOL class. After controlling for significant covariates, between-group differences were found in SNPs in interleukin 1 receptor 2 (IL1R2) and nuclear factor kappa beta 2 (NFKB2). For IL1R2, carrying one or two doses of the rare C allele was associated with decreased odds of belonging to the lower QOL class. For NFKB2, carriers with two doses of the rare G allele were more likely to belong to the lower QOL class. CONCLUSIONS: Unique genetic markers in cytokine genes may partially explain interindividual variability in QOL. IMPLICATIONS FOR NURSING: Determination of high-risk characteristics and unique genetic markers would allow for earlier identification of patients with cancer and FCs at higher risk for poorer QOL. Knowledge of these risk factors could assist in the development of more targeted clinical or supportive care interventions for those identified.
Resumo:
A disintegrin and metalloprotease with thrombospondin motifs protein 1 (ADAMTS1) is a protease commonly up-regulated in metastatic carcinoma. Its overexpression in cancer cells promotes experimental metastasis, but whether ADAMTS1 is essential for metastatic progression is unknown. To address this question, we investigated mammary cancer progression and spontaneous metastasis in the MMTV-PyMT mouse mammary tumor model in Adamts1 knockout mice. Adamts1−/−/PyMT mice displayed significantly reduced mammary tumor and lung metastatic tumor burden and increased survival, compared with their wild-type and heterozygous littermates. Histological examination revealed an increased proportion of tumors with ductal carcinoma in situ and a lower proportion of high-grade invasive tumors in Adamts1−/−/PyMT mice, compared with Adamts1+/+/PyMT mice. Increased apoptosis with unaltered proliferation and vascular density in the Adamts1−/−/PyMT tumors suggested that reduced cell survival accounts for the lower tumor burden in ADAMTS1-deficient mice. Furthermore, Adamts1−/− tumor stroma had significantly lesser amounts of proteolytically cleaved versican and increased numbers of CD45+ leukocytes. Characterization of immune cell gene expression indicated that cytotoxic cell activation was increased in Adamts1−/− tumors, compared with Adamts1+/+ tumors. This finding is supported by significantly elevated IL-12+ cell numbers in Adamts1−/− tumors. Thus, in vivo ADAMTS1 may promote mammary tumor growth and progression to metastasis in the PyMT model and is a potential therapeutic target to prevent metastatic breast cancer.
Resumo:
To identify key regulatory mechanisms in the growth and development of the human endometrium, microarray analysis was performed on uncultured human endometrium collected during menstruation (M) and the late-proliferative (LATE-P)-phase of the menstrual cycle, as well as after 24 h incubation in the presence of oestradiol (17beta-E2). We demonstrate the expression of novel gene transcripts in the human endometrium. i.e. mucin-9, novel oestrogen-responsive gene transcripts, i.e. gelsolin and flotillin-1, and genes known to be expressed in human endometrium but not yet shown to be oestrogen responsive, i.e. connexin-37 and TFF1/pS2. Genes reported to be expressed during the implantation window and implicated in progesterone action, i.e. secretoglobin family 2A, member 2 (mammaglobin) and homeobox-containing proteins, were up-regulated in uncultured LATE-P-phase endometrium compared to M-phase endometrium. Some gene transcripts are regulated directly by 17beta-E2 alone, others are influenced by the in vivo environment as well. These observations emphasise that the regulation of endometrium maturation by oestrogen entails more then just stimulation of cell proliferation.
Resumo:
To date, research into the biological processes and molecular mechanisms associated with endometrial receptivity and embryo implantation has been a focus of attention, whereas the complex events that occur in the human endometrium during the menstrual and proliferative phase under the influence of estrogen have received little attention. The objective of this review is to provide an update of our current understanding of the actions of estrogen on both human and rodent endometrium, with special emphasis on the regulation of uterine growth and cell proliferation, and the value of global gene expression analysis, in increasing understanding of these processes.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) accounts for a bulk of the oral and laryngeal cancers, the majority (70%) of which are associated with smoking and excessive drinking, major known risk factors for the development of HNSCC. In contrast to reports that suggest an inverse relationship between smoking and global DNA CpG methylation, hypermethylation of promoters of a number of genes was detected in saliva collected from patients with HNSCC. Using a sensitive methylation-specific polymerase chain reaction (MSP) assay to determine specific methylation events in the promoters of RASSF1A, DAPK1, and p16 genes, we demonstrate that we can detect tumor presence with an overall accuracy of 81% in the DNA isolated from saliva of patients with HNSCC (n = 143) when compared with the DNA isolated from the saliva of healthy nonsmoker controls (n = 31). The specificity for this MSP panel was 87% and the sensitivity was 80%(with a Fisher exact test P < .0001). In addition, the test panel performed extremely well in the detection of the early stages of HNSCCs, with a sensitivity of 94% and a specificity of 87%, and a high. concordance value of 0.8, indicating an excellent overall agreement between the presence of HNSCC and a positive MSP panel result. In conclusion, we demonstrate that the promoter methylation of RASSF1A, DAPK1, and p16 MSP panel is useful in detecting hypermethylation events in a noninvasive manner in patients with HNSCC.
Resumo:
Head and neck cancers (HNCs) represent a significant and ever-growing burden to the modern society, mainly due to the lack of early diagnostic methods. A significant number of HNCs is often associated with drinking, smoking, chewing beetle nut, and human papilloma virus (HPV) infections. We have analyzed DNA methylation patterns in tumor and normal tissue samples collected from head and neck squamous cell carcinoma (HNSCC) patients who were smokers. We have identified novel methylation sites in the promoter of the mediator complex subunit 15 (MED15/PCQAP) gene (encoing a co-factor important for regulation of transcription initiation for promoters of many genes), hypermethylated specifically in tumor cells. Two clusters of CpG dinucleotides methylated in tumors, but not in normal tissue from the same patients, were identified. These CpG methylation events in saliva samples were further validated in a separate cohort of HNSCC patients (who developed cancer due to smoking or HPV infections) and healthy controls using methylation-specific PCR (MSP). We used saliva as a biological medium because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option for large-scale screening studies. The methylation levels for the two identified CpG clusters were significantly different between the saliva samples collected from healthy controls and HNSCC individuals (Welch's t-test returning P, 0.05 and Mann-Whitney test P, 0.01 for both). The developed MSP assays also provided a good discriminative ability with AUC values of 0.70 (P, 0.01) and 0.63 (P, 0.05). The identified novel CpG methylation sites may serve as potential non-invasive biomarkers for detecting HNSCC. © the authors.
Resumo:
The transcriptome response of Atlantic salmon (Salmo salar) displaying advanced stages of amoebic gill disease (AGD) was investigated. Naïve smolt were challenged with AGD for 19 days, at which time all fish were euthanized and their severity of infection quantified through histopathological scoring. Gene expression profiles were compared between heavily infected and naïve individuals using a 17 K Atlantic salmon cDNA microarray with real-time quantitative RT-PCR (qPCR) verification. Expression profiles were examined in the gill, anterior kidney, and liver. Twenty-seven transcripts were significantly differentially expressed within the gill; 20 of these transcripts were down-regulated in the AGD-affected individuals compared with naïve individuals. In contrast, only nine transcripts were significantly differentially expressed within the anterior kidney and five within the liver. Again the majority of these transcripts were down-regulated within the diseased individuals. A down-regulation of transcripts involved in apoptosis (procathepsin L, cathepsin H precursor, and cystatin B) was observed in AGD-affected Atlantic salmon. Four transcripts encoding genes with antioxidant properties also were down-regulated in AGD-affected gill tissue according to qPCR analysis. The most up-regulated transcript within the gill was an unknown expressed sequence tag (EST) whose expression was 218-fold (± SE 66) higher within the AGD affected gill tissue. Our results suggest that Atlantic salmon experiencing advanced stages of AGD demonstrate general down-regulation of gene expression, which is most pronounced within the gill. We propose that this general gene suppression is parasite-mediated, thus allowing the parasite to withstand or ameliorate the host response. © 2008 Springer Science+Business Media, LLC.
Resumo:
The 19 kDa carboxyl-terminal fragment of merozoite surface protein 1 (MSP119) is a major component of the invasion-inhibitory response in individual immunity to malaria. A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of malaria DNA vaccines encoding MSP119 is presented here. After condensing the plasmid DNA (pDNA) molecules with a cationic polymer polyethylenimine (PEI), a 40 kHz ultrasonic atomization frequency was used to formulate PLGA microparticles at a flow rate of 18 mL h1. High levels of gene expression and moderate cytotoxicity in COS-7 cells were achieved with the condensed pDNA at a nitrogen to phosphate (N/P) ratio of 20, thus demonstrating enhanced cellular uptake and expression of the transgene. The ability of the microparticles to convey pDNA was examined by characterizing the formulated microparticles. The microparticles displayed Z-average hydrodynamic diameters of 1.50-2.10 lm and zeta potentials of 17.8-23.2 mV. The encapsulation efficiencies were between 78 and 83%, and 76 and 85% of the embedded malaria pDNA molecules were released under physiological conditions in vitro. These results indicate that PLGA-mediated microparticles can be employed as potential gene delivery systems to antigen-presenting cells in the prevention of malaria.
Resumo:
The Full Court of the Federal Court of Australia in D'Arcy v Myriad Genetics [2014] FCAFC 115 recently upheld the validity of Myriad Genetics' Australian BRCA1 gene patent over isolated DNA sequences.
Resumo:
In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed. Keywords: Edge-weighting; weighted graphs; gene expression; bi-clustering
Resumo:
In the Yersinia pseudotuberculosis serotyping scheme, 21 serotypes are present originating from about 30 different O-factors distributed within the species. With regard to the chemical structures of lipopolysaccharides (LPSs) and the genetic basis of their biosynthesis, a number, but not all, of Y. pseudotuberculosis strains representing different serotypes have been investigated. In order to present an overall picture of the relationship between genetics and structures, we have been working on the genetics and structures of various Y. pseudotuberculosis O-specific polysaccharides (OPSs). Here, we present a structural and genetic analysis of the Y. pseudotuberculosis serotype O:11 OPS. Our results showed that this OPS structure has the same backbone as that of Y. pseudotuberculosis O:1b, but with a 6d-l-Altf side-branch instead of Parf. The 3′ end of the gene cluster is the same as that for O:1b and has the genes for synthesis of the backbone and for processing the completed repeat unit. The 5′ end has genes for synthesis of 6d-l-Altf and its transfer to the repeating unit backbone. The pathway for the synthesis of the 6d-l-Altf appears to be different from that for 6d-l-Altp in Y. enterocolitica O:3. The chemical structure of the O:11 repeating unit is [Figure]
Resumo:
A major virulence factor for Yersinia pseudotuberculosis is lipopolysaccharide, including O-polysaccharide (OPS). Currently, the OPS based serotyping scheme for Y. pseudotuberculosis includes 21 known O-serotypes, with genetic and structural data available for 17 of them. The completion of the OPS structures and genetics of this species will enable the visualization of relationships between O-serotypes and allow for analysis of the evolutionary processes within the species that give rise to new serotypes. Here we present the OPS structure and gene cluster of serotype O:12, thus adding one more to the set of completed serotypes, and show that this serotype is present in both Y. pseudotuberculosis and the newly identified Y. similis species. The O:12 structure is shown to include two rare sugars: 4-C[(R)-1-hydroxyethyl]-3,6-dideoxy-d-xylo-hexose (d-yersiniose) and 6-deoxy-l-glucopyranose (l-quinovose). We have identified a novel putative guanine diphosphate (GDP)-l-fucose 4-epimerase gene and propose a pathway for the synthesis of GDP-l-quinovose, which extends the known GDP-l-fucose pathway.
Resumo:
The repeat unit structure of the K2 capsule from an extensively antibiotic-resistant Acinetobacter baumannii global clone 2 (GC2) strain was determined. The oligosaccharide contains three simple sugars, d-glucopyranose, d-galatopyranose and N-acetyl-d-galactosamine, and the complex sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (Pse5Ac7Ac or pseudaminic acid), which has not previously been reported in any A. baumannii capsule. The strain was found to carry all the genes required for the synthesis of the sugars and construction of the K2 structure. The linkages catalyzed by the initiating transferase, three glycosyltransferases and the Wzy polymerase were also predicted. Examination of publicly available A. baumannii genome sequences revealed that the same gene cluster, KL2, often occurs in extensively antibiotic-resistant GC2 isolates and in further strain types. The gene module responsible for the synthesis of pseudaminic acid was also detected in four other K loci. A related module including genes for an acylated relative of pseudaminic acid was also found in two new KL types. A polymerase chain reaction scheme was developed to detect all modules containing genes for sugars based on pseudaminic acid and to specifically detect KL2.