969 resultados para Isoform Selectivity
Resumo:
Motion is a powerful cue for figure-ground segregation, allowing the recognition of shapes even if the luminance and texture characteristics of the stimulus and background are matched. In order to investigate the neural processes underlying early stages of the cue-invariant processing of form, we compared the responses of neurons in the striate cortex (V1) of anaesthetized marmosets to two types of moving stimuli: bars defined by differences in luminance, and bars defined solely by the coherent motion of random patterns that matched the texture and temporal modulation of the background. A population of form-cue-invariant (FCI) neurons was identified, which demonstrated similar tuning to the length of contours defined by first- and second-order cues. FCI neurons were relatively common in the supragranular layers (where they corresponded to 28% of the recorded units), but were absent from layer 4. Most had complex receptive fields, which were significantly larger than those of other V1 neurons. The majority of FCI neurons demonstrated end-inhibition in response to long first- and second-order bars, and were strongly direction selective, Thus, even at the level of V1 there are cells whose variations in response level appear to be determined by the shape and motion of the entire second-order object, rather than by its parts (i.e. the individual textural components). These results are compatible with the existence of an output channel from V1 to the ventral stream of extrastriate areas, which already encodes the basic building blocks of the image in an invariant manner.
Resumo:
The muscle isoform. of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.
Resumo:
A growing body of evidence suggests that the Golgi complex contains an actin-based filament system. We have previously reported that one or more isoforms from the tropomyosin gene Tm5NM (also known as gamma-Tm), but not from either the alpha- or beta-Tm genes, are associated with Golgi-derived vesicles (Heimann et al., (1999). J. Biol. Chem. 274, 10743-10750). We now show that Tm5NM-2 is sorted specifically to the Golgi complex, whereas Tm5NM-1, which differs by a single alternatively spliced internal exon, is incorporated into stress fibers. Tm5NM-2 is localized to the Golgi complex consistently throughout the G1 phase of the cell cycle and it associates with Golgi membranes in a brefeldin A-sensitive and cytochalasin D-resistant manner. An actin antibody, which preferentially reacts with the ends of microfilaments, newly reveals a population of short actin filaments associated with the Golgi complex and particularly with Golgi-derived vesicles. Tm5NM-2 is also found on these short microfilaments. We conclude that an alternative splice choice can restrict the sorting of a tropomyosin isoform to short actin filaments associated with Golgi-derived vesicles. Our evidence points to a role for these Golgi-associated microfilaments in vesicle budding at the level of the Golgi complex.
Resumo:
The omega-conotoxins from fish-hunting cone snails are potent inhibitors of voltage-gated calcium channels. The omega-conotoxins MVIIA and CVID are selective N-type calcium channel inhibitors with potential in the treatment of chronic pain. The beta and alpha(2)delta-1 auxiliary subunits influence the expression and characteristics of the alpha(1B) subunit of N-type channels and are differentially regulated in disease states, including pain. In this study, we examined the influence of these auxiliary subunits on the ability of the omega-conotoxins GVIA, MVIIA, CVID and analogues to inhibit peripheral and central forms of the rat N-type channels. Although the beta3 subunit had little influence on the on- and off-rates of omega-conotoxins, coexpression of alpha(2)delta with alpha(1B) significantly reduced on- rates and equilibrium inhibition at both the central and peripheral isoforms of the N-type channels. The alpha(2)delta also enhanced the selectivity of MVIIA, but not CVID, for the central isoform. Similar but less pronounced trends were also observed for N-type channels expressed in human embryonic kidney cells. The influence of alpha(2)delta was not affected by oocyte deglycosylation. The extent of recovery from the omega-conotoxin block was least for GVIA, intermediate for MVIIA, and almost complete for CVID. Application of a hyperpolarizing holding potential ( - 120 mV) did not significantly enhance the extent of CVID recovery. Interestingly, [R10K] MVIIA and [O10K] GVIA had greater recovery from the block, whereas [K10R] CVID had reduced recovery from the block, indicating that position 10 had an important influence on the extent of omega-conotoxin reversibility. Recovery from CVID block was reduced in the presence of alpha(2)delta in human embryonic kidney cells and in oocytes expressing alpha(1B-b). These results may have implications for the antinociceptive properties of omega-conotoxins, given that the alpha(2)delta subunit is up-regulated in certain pain states.
Resumo:
The vitamin D receptor (VDR) mediates the effects of 1,25(OH)(2)D-3, the active form of vitamin D. The human VDRB1 isoform differs from the originally described VDR by an N-terminal extension of 50 amino acids. Here we investigate cell-, promoter-, and ligand-specific transactivation by the VDRB1 isoform. Transactivation by these isoforms of the cytochrome P450 CYP24 promoter was compared in kidney (HEK293 and COS1), tumor-derived colon (Caco-2, LS174T, and HCT15), and mammary (HS578T and MCF7) cell lines. VDRB1 transactivation in response to 1,25(OH)(2)D-3 was greater in Cost and HCT15 cells (145%), lower in HEK293 and Caco-2 cells (70-85%) and similar in other cell lines tested. By contrast, on the cytochrome P450 CYP3A4 promoter, 1,25(OH)(2)D-3-induced VDRB1 transactivation was significantly lower than VDRA in Caco-2 (68%), but comparable to VDRA in HEK293 and COS1 cells. Ligand-dependence of VDRB1 differential transactivation was investigated using the secondary bile acid lithocholic acid (LCA). On the CYP24 promoter LCA-induced transactivation was similar for both isoforms in COS1, whereas in Caco-2 and HEK293 cells VDRB1 was less active. On the CYP3A4 promoter, LCA activation of VDRB1 was comparable to VDRA in all the cell lines tested. Mutational analysis indicated that both the 1,25(OH)(2)D-3 and LCA-regulated activities of both VDR isoforms required a functional ligand-dependent activation function (AF-2) domain. In gel shift assays VDR:DNA complex formation was stronger in the presence of 1,25(OH)(2)D-3 than with LCA. These results indicate that regulation of VDRB1 transactivation activity is dependent on cellular context, promoter, and the nature of the ligand. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
To investigate the role of peroxisome proliferator-activated receptors (PPARs) chi and beta in the differentiation of colon cancer cells, we differentiated HT-29 cells using sodium butyrate (NaB) and culturing post-confluence and assessed differentiation using the marker intestinal alkaline phosphatase. While PPAR chi levels only changed with culturing post confluence, PPAR beta levels increased independent of the method of differentiation. To explore further the differences induced by NaB. we assessed changes in both PPAR isoforms in MCF-7 breast cancer cells cultured in the presence of NaB over 48 h. Again a very different expression pattern was observed with PPAR-1 increasing after 4 h and remaining elevated, while PPAR beta increased transiently. Our studies suggest that the expression of PPARs is dependent upon both the method of differentiation and on time. Moreover, these studies show that changes in levels are not required for the differentiation of colon cancer cell lines, whereas changes in PPAR beta are more closely associated with differentiation. (c) 2005 Elsevier Inc. All rights reserved.
GABA(A) receptor beta isoform protein expression in human alcoholic brain: interaction with genotype
Resumo:
Background and purpose: Voltage-dependent block by Mg2+ is a cardinal feature of NMDA receptors which acts as a coincidence detector to prevent the receptor from over-activation. Inhibition of NMDA receptor currents by 5-hydroxytryptamine (5-HT) indicated that 5-HT, similar to Mg2+, binds within the membrane electric field. In the present study, we assessed whether point mutations of critical asparagine residues located within the selectivity filter of NR1 and NR2A subunits of NMDA receptor-channel affect voltage-dependent block by 5-HT. Experimental approach: The mode of action of 5-HT and Mg2+ on wild-type and mutated NMDA receptor-channels expressed in Xenopus oocytes was investigated using the two-electrode voltage clamp recording technique. Key results: The mutation within the NR1 subunit NR1(N0S or N0Q) strongly reduced the voltage dependent block by 5-HT and increased the IC50. The corresponding mutations within the NR2 subunits NR2A(N0Q or N + 1Q) reduced the block by 5-HT to a lesser extent. This is in contrast to the block produced by external Mg2+ where a substitution at the NR2A(N0) and NR2A(N + 1) sites but not at the NR1(N0) site significantly reduced Mg2+ block. Conclusion and implications: The block of NMDA receptor-channels by 5-HT depends on the NR1-subunit asparagine residue and to a lesser extent on the NR2A-subunit asparagine residues. These data suggest that the interaction of 5-HT with functionally important residues in a narrow constriction of the pore of the NMDA receptor-channel provides a significant barrier to ionic fluxes through the open channel due to energetic factors governed by chemical properties of the binding site and the electric field.
Resumo:
Trophodynamics of blooms of the toxic marine cyanobacterium Lyngkya majuscula were investigated to determine dietary specificity in two putative grazers: the opisthobranch molluscs, Stylocheilus striatus and Bursatella leachii. S. striatus is associated with L. majuscula blooms and is known to sequester L. majuscula metabolites. The dietary specificity and toxicodynamics of B. leachii in relation to L. majuscula is less well documented. In this study we found diet history had no significant effect upon dietary selectivity of S. striatus when offered a range of plant species. However, L. majuscula chemotype may alter S. striatus' selectivity for this cyanobacterium. Daily biomass increases between small and large size groups of both species were recorded in no-choice consumption trials using L. majuscula. Both S. striatus and B. leachii preferentially consumed L. majuscula containing lyngbyatoxin-a. Increase in mass over a 10-day period in B. leachii (915%) was significantly greater than S. striatus (150%), yet S. striatus consumed greater quantities of L. majuscula (g day(-1)) and thus had a lower conversion efficiency (0.038) than B. leachii (0.081) based on sea hare weight per gram of L. majuscula consumed day(-1). Our findings suggest that growth rates and conversion efficiencies may be influenced by sea hare maximum growth potential, acquisition of secondary metabolites or diet type. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Calcium transporters play vital roles in the transport of calcium ions across cells of the mammary gland and the intestine. One such transporter is the plasma membrane Ca2+-ATPase (PMCA), of which there are 4 different genes (PMCA1-4). In these studies we investigated the hypothesis that the expression of PMCA is altered in HT-29 colon cancer cells during sodium butyrate and post-confluence mediated differentiation. We also investigated if PMCA expression is altered in breast cancer cell lines in an isofrom specific manner. Our results indicate isoform specific changes in PMCA mRNA and protein levels in HT-29 cells during differentiation, using real time RT-PCR and western blotting, respectively. We also observed pronounced alterations in the mRNA levels of the PMCA isoform linked to lactation (PMCA2) in a bank of breast cancer cell lines compared to normal cell lines. Changes in other isoforms were less pronounced. To further study the role of specific calcium transporters we have optimised conditions for the reverse transfection of MCF-7 breast cancer cells using NeoFX (Ambion). Using real time RT-PCR we have confirmed gene knockdown for specific isoforms and have studied the time course of knockdown over 96 hours. We see approximately 68 % inhibition at 24 hours increasing to 84 % 96 hours post-reverse transfection. Our studies suggest that the expression of specific calcium transporter isoforms can be significantly altered in cancer cell lines and that isoform specific inhibition of calcium transporters is possible using reverse transfection of siRNA
Resumo:
1. Potency orders were determined for a series of agonists and antagonists on the calcitonin gene-related peptide (CGRP) receptor of rat L6 myocytes. The agents tested were all shown to have been active against CGRP, amylin or adrenomedullin receptors. 2. AC187 had a PIC50 Of 6.8 ± 0.10, making it 14 fold less potent as an antagonist than CGRP8-37 (PIC50, 7.95 ± 0.14). Amyline8-37 was equipotent to AC187 (PIC50, 6.6 ± 0.16) and CGRP19-37 was a fold less potent than either (pIC50 6.1 ± 0.24). 3. [Ala11]-CGRP8-37 was 6 fold less potent than CGRP8-37, (pIC50 7.13 ± 0.14), whereas [Ala18] CGRP8-37 was approximately equipotent to CGRP8-37 (pIC50, 7.52 ± 0.15). However, [Ala11,Ala18]- CGRP8-37 was over 300 fold less potent than CGRP8-37 (pIC50, 5.30 ± 0.04). 4. [Tyr0]-CGRP28-37, amylin19-37 and adrenomedullin22-52 were inactive as antagonists at concentrations of up to 1 μM. 5. Biotinyl-human α-CGRP was 150 fold less potent than human α-CGRP itself (EC50 values of 48 ± 17 nM and 0.31 ± 0.13 nM, respectively). At 1 μM, [Cys(acetomethoxy)(2'7)]-CGRP was inactive as an agonist. 6. These results confirm a role for Arg11 in maintaining the high affinity binding of CGRP8-37. Arg18 is of less direct significance for high affinity binding, but it may be important in maintaining the amphipathic nature of CGRP and its analogues.